Function

Definition and examples

Def.: A function f is a rule that assigns to each element x in a set D exactly one element y in a set B .

The function f maps the set D onto the set B .
f: $\quad \mathrm{D} \rightarrow \mathrm{B}$

$$
x \rightarrow y=f(x) \quad(" f \text { of } x ")
$$

The set D is the domain, the set B is the codomain, and the set E is the range of the function f.
The element y is the image of the element x .
or (if D and B are number sets): y is the value of f at x.

Ex.: 1. $\quad \mathrm{D}=$ set of all the Swiss holiday resorts
$B=$ set of all the human beings
f: $\quad \mathrm{D} \rightarrow \mathrm{B}$
$\mathrm{r} \rightarrow \mathrm{d}=\mathrm{f}(\mathrm{r})=$ director of holiday resort r

2. $\quad \mathrm{D}=$ set of all the countries of the world

B $=$ set of all the cities of the world
f: $\quad \mathrm{D} \rightarrow \mathrm{B}$
$\mathrm{a} \rightarrow \mathrm{b}=\mathrm{f}(\mathrm{a})=$ capital of country a
3. Cable car company
$\mathrm{D}=\mathbb{N} \quad$ (= set of natural numbers)
$B=R \quad$ (= set of real numbers)
f: $\quad \mathrm{D} \rightarrow \mathrm{B}$
$\mathrm{n} \rightarrow \mathrm{p}=\mathrm{f}(\mathrm{v})=$ profit (e.g. in Euros) when n tickets have been sold
4. $\quad \mathrm{D}=\mathbb{N}$
$B=\mathbb{Z}$
f: $\quad N \rightarrow \mathbb{Z}$
$\mathrm{n} \rightarrow \mathrm{y}=\mathrm{f}(\mathrm{n})=\mathrm{n}-4$

5. $\mathrm{D}=\mathrm{B}=\mathrm{R}$
$\mathrm{p}: \quad \mathbb{R} \rightarrow \mathbf{R}$

$$
x \rightarrow y=p(x)=\frac{x^{3}-3}{2 x^{2}+1}
$$

Representation of a function

Arrow diagram

Table of values

x	y
1	1
3	9
5	25
-5	25
0.4	0.16
\ldots	\ldots

Formula

$$
\begin{aligned}
\mathrm{f}: & \mathrm{R}
\end{aligned} \quad \rightarrow \mathrm{R}, \mathrm{x}(\mathrm{x})=\mathrm{x}^{2} .
$$

Graph

