Exercises 8 Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium

Objectives

- be able to solve special quadratic equations without applying the quadratic formula.
- be able to solve a quadratic equation by applying the quadratic formula.
- be able to solve a quadratic equation containing a parameter.
- be able to determine the vertex form of a quadratic function out of the coordinates of the vertex and the coordinates of another point of the corresponding parabola.
- be able to determine the general form of a quadratic function out of the coordinates of three points of the corresponding parabola.
- be able to treat applied tasks in economics by means of quadratic equations or systems of quadratic equations.

Problems

8.1

State	the solution set for each equation.		
a)	(x + 2)(x + 5) = 0	b)	(x - 8)(5x - 9) = 0
c)	$x^2 - 3x = 0$	d)	$x^2 + 7x = 0$
e)	$4x^2 - 9 = 0$	f)	$100x^2 - 1 = 0$
g)	(3x - 2)(4x + 1) = 0	h)	$4x^2 + 5x = 0$
i)	$3x^2 = 27$	j)	$x^2 = x$

Solve the quadratic equations below without using the quadratic formula.

8.2 Solve the quadratic equations below. State the solution set for each equation.

a)	$(7 + x)(7 - x) = (3x + 2)^2 - (2x + 3)^2$	b)	(x - 3)(2x - 7) = 1
c)	$\frac{8}{x^2 - 4} + \frac{2}{2 - x} = 3x - 1$	d)	$\frac{x-4}{x-5} = \frac{30-x^2}{x^2-5x}$
e)	$\frac{x^2 - x - 2}{2 - x} = 1$	f)	$\frac{x^2 - 4}{x^2 - 4} = 1$

- 8.3 Determine the value(s) of the parameter b such that the quadratic equation has exactly one solution. State this solution:
 - a) $2x^2 = 3x b$
 - b) $x^2 + bx + b = -3$
- 8.4 Solve the following equations for x. Take into account that the parameter b can have any real value.
 - a) $x^2 + x + b = 0$
 - b) $-bx = 1 + 4x^2$

8.5 A parabola has the vertex V and contains the point P.Determine the formula of the corresponding quadratic function both in the vertex and in the general form.

- a) V(2|4) P(-1|7)
- b) V(1|-8) P(2|-7)

8.6 A parabola contains the three points P, Q, and R. Determine the formula of the corresponding quadratic function in the general form.

a)	P(-4 8)	Q(0 0)	R(10 15)
b)	P(1 -1)	Q(2 4)	R(4 8)

8.7 Find the equilibrium quantity and equilibrium price of a commodity for the given supply and demand functions f_s and f_d :

a)	supply	$p = f_{s}(q) = \frac{1}{4}q^{2} + 10$
	demand	$p = f_d(q) = 86 - 6q - 3q^2$
b)	supply demand	$p = f_s(q) = q^2 + 8q + 16$ $p = f_d(q) = -3q^2 + 6q + 436$

8.8 The total costs and the total revenues for a company are given by

$$\begin{split} C(x) &= 2000 + 40x + x^2 \\ R(x) &= 130x \end{split}$$

Find the break-even points.

8.9 The costs C(x) for producing x items and the revenue R(x) for selling x items are given below. How many items are to be produced and sold in order to achieve a profit of 200 CHF?

 $C(x) = (x^2 + 100x + 80) CHF$ $R(x) = (160x - 2x^2) CHF$

Answers

8.1	a)	$S = \{-5, -2\}$	b)	S = {9/	(5,8}
	c)	$S = \{0, 3\}$	d)	S = {-7	(, 0}
	e)	$S = \{-3/2, 3/2\}$	f)	S = {-1	/10, 1/10}
	g)	$S = \{-1/4, 2/3\}$	h)	S = {-5	/4, 0}
	i)	$S = \{-3, 3\}$	j)	$S = \{0,$	1}
8.2	a)	$S = \{-3, 3\}$	b)	S = {5/	2,4}
	c)	$S = \{-5/3, 0\}$	d)	S = {-3	}
	e)	$S = \{-2\}$	f)	$S = \mathbb{R} \setminus \{$	{-2, 2}
8.3	a)	$b = \frac{9}{8}$	$x = \frac{3}{4}$		
	b)	b ₁ = - 2	x = 1		
		$b_2 = 6$	x = - 3		
8.4	a)	$b < \frac{1}{4}$	$x_{1,2} = \frac{-1 \pm \sqrt{1}}{2}$	- 4b	2 solutions
		$b = \frac{1}{4}$	$x = -\frac{1}{2}$		1 solution
		$b > \frac{1}{4}$	$\mathbf{S} = \{ \}$		no solution
		4			no solution
	b)	b > 4	$x_{1,2} = \frac{-b \pm \sqrt{b}}{8}$	² - 16	2 solutions
		$b = \pm 4$	$x = -\frac{b}{8}$		1 solution
		b < 4	S = { }		no solution
8.5	a)	$y = f(x) = \frac{1}{3}(x - 2)^2 + 4$	$=\frac{1}{3}x^2 - \frac{4}{3}x + \frac{1}{3}x$	<u>6</u> 3	

5 a)
$$y = f(x) = \frac{1}{3}(x - 2)^2 + 4 = \frac{1}{3}x^2 - \frac{4}{3}x + \frac{1}{3}x^3$$

b) $y = f(x) = (x - 1)^2 - 8 = x^2 - 2x - 7$

8.6 a)
$$y = f(x) = \frac{1}{4}x^2 - x$$

b) $y = f(x) = -x^2 + 8x - 8$

8.8 $x_1 = 40, x_2 = 50$

8.9 profit
$$P(x) = R(x) - C(x) = -3x^2 + 60x - 80 \stackrel{!}{=} 200$$

S = {7.41..., 12.58...}
7 or 13 items