Exercises 3 Function Domain, codomain, range, graph

Objectives

- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.

Problems

3.1 Which of the following relations are functions? Explain your answer.

f: D B, p y = f(p) = year of birth of person p

- h) f: R R, x y = f(x) = x²
- i) f: \mathbf{R}^+ R, x y = f(x) = number the square of which is x
- j) f: \mathbf{R} \mathbf{R} , t b = f(t) = bank account balance at time t

- 3.2 Determine the range E of the functions below:
 - a) $D = \{January, February, March, ..., December\}$ $B = \{A, B, C, ..., Z\}$ f: D B, m l = f(m) = initial letter of m
 - b) D = set of all the neighbouring countries of Switzerland
 B = set of all the European cities
 c: D B, x y = c(x) = capital of neighbouring country x
 - c) function f in problem 3.1 g)
 - d) function f in problem 3.1 h)

3.3 a) f: **R** R, x $f(x) = x^{3}-x$

b)

Determine the following values:

i) ii) iii) iv)	f(0) f(1) f(a) f(x-)		
g: R ∖		R, x	g(x) =	$=\frac{x^2}{x+1}$
Deter	mine t	he follo		

i) g(0)

- ii) g(1)
- iii) g(a)
- iv) g(x+a)
- 3.4 The graph of a function f ist given as follows:

- a) State the value of f(-1).
- b) Estimate the value of f(2).
- c) For what values of x is f(x) = 2?
- d) Estimate the values of x such that f(x) = 0.
- e) State the domain D of f.
- f) State the range E of f.

Answers

3.1	a)	no function		
	b)	function		
	c)	no function		
	d)	function		
	e)	no function		
	f)	no function		
	g)	function		
	h)	function		
	i)	no function		
	j)	function		
3.2	a)	$E = \{A, D, F, J, M, N, O, S\}$		
	b)	E = {Berlin, Vienna, Vaduz, Rome, Paris}		
	c)	$\mathbf{E} = \mathbf{B}$		
	d)	$\mathbf{E} = \mathbf{R}_0^+$		
3.3	a)	i) $f(0) = 0^3 - 0 = 0$		
		ii) $f(1) = 1^{3} - 1 = 0$ iii) $f(a) = a^{3} - a$		
		iii) $f(a) = a^3 - a$ iv) $f(x+a) = (x+a)^3 - (x+a)$		
	b)	i) $g(0) = \frac{0^2}{0+1} = 0$		
		ii) $g(1) = \frac{1^2}{1+1} = \frac{1}{2}$		

ii)	$g(1) = \frac{1}{1+1} = \frac{1}{2}$
iii)	$g(a) = \frac{a^2}{a+1}$
iv)	$g(x+a) = \frac{(x+a)^2}{x+a+1}$

3.4	a)	f(-1) = -2
	b)	f(2) 2.8
	c)	$x_1 = -3, x_2 = 1$
	d)	x ₁ -2.5, x ₂ 0.3
	e)	$D = \{x \ R \mid -3 \ x \ 3\} = [-3,3]$

f)
$$E = \{y \ R \mid -2 \ y \ 3\} = [-2,3]$$