Exercise 7 Quadratic function and equations Quadratic function, quadratic equations

Objectives

- be able to determine the position of the vertex out of the vertex form of a quadratic function.
- be able to graph a quadratic function out of the vertex form.
- know and understand the relation between a quadratic function and a quadratic equation.
- be able to solve a quadratic equation by applying the quadratic formula.

Problems

1. Graph the quadratic functions below:

a) f: **R** R $y = f(x) = (x + 2)^2$ х b) f: R $y = f(x) = -3x^2$ Х f: R c) R $y = f(x) = 2x^2 - 1$ Х d) f: **R** R $y = f(x) = -(x - 3)^2 + 4$ Х

2. Each quadratic equation can be converted into the following general form:

$$ax^2 + bx + c = 0$$
 (a 0) (*)

Determine the number of elements that the solution set of a quadratic function can have. Hints:

- Compare the left hand side of (*) with the general form of a quadratic function.

- Think of the graph of a quadratic function.

3.

Solve the quadratic equations below. State the solution set for each equation.

a)	$x^2 + 10x + 24 = 0$	b)	$x^2 + 22x + 121 = 0$
c)	$x^2 + 2x + 8 = 0$	d)	$x^2 - 3x - 10 = 0$
e)	$x^2 - 14x + 49 = 0$	f)	$x^2 - 8x + 25 = 0$
g)	$x^2 - 7x + 10 = 0$	h)	$x^2 + 6x + 5 = 0$
i)	$x^2 - x - 20 = 0$		

4. Solve the equations below. State the solution set for each equation.

a)
$$9(x - 10) - x(x - 15) = x$$
 b) $3(x^2 + 2) - x(x + 9) = 11$

c)
$$y^3 + 19 = (y + 4)^3$$
 d) $\frac{9x - 8}{4x + 7} = \frac{3x}{2x + 5}$

e) $\frac{x^2}{x-6} - \frac{6x}{6-x} = 1$

Answers

1.	a)	vertex V(-2 0), parabola opens upwards
	b)	vertex V(0 0), parabola opens downwards
	c)	vertex V(0 -1), parabola opens upwards
	d)	vertex V(3 4), parabola opens downwards

2. ...

3.	a)	$S = \{-6, -4\}$
	b)	$S = \{-11\}$
	c)	$S = \{ \}$
	d)	$S = \{-2, 5\}$
	e)	$S=\{7\}$
	f)	$S = \{ \}$
	g)	$S = \{2, 5\}$
	h)	$S = \{-5, -1\}$
	i)	$S = \{-4, 5\}$

- 4. a) $S = \{5, 18\}$
 - b) $S = \{5, -1/2\}$
 - c) $S = \{-3/2, -5/2\}$
 - d) $S = \{2, -10/3\}$
 - e) $S = \{-2, -3\}$