
## Exercise 3 Function Domain, codomain, range, graph

## Objectives

- understand what a function is.
- be able to judge whether a given relation is a function.
- be able to determine the range of a given function.
- be able to determine values of a given function.

## Problems

1. Which of the following relations are functions? Explain your answer.



- B = set of all the human beings aged between 20 and 30 f: D B, y p = f(y) = person who was born in the year y
- g) D = set of all the human beings aged between 20 and 30 $B = \{1978, 1979, \dots, 1987, 1988\}$ f: D B, p y = f(p) = year of birth of person p
- h) f: **R** R, x  $y = f(x) = x^2$
- i) f:  $\mathbf{R}^+$  R, x y = f(x) = number the square of which is x
- j) f:  $\mathbf{R}$   $\mathbf{R}$ , t b = f(t) = bank account balance at time t

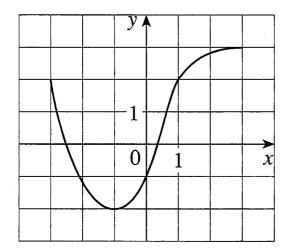
- 2. Determine the range E of the functions below:
  - D = {January, February, March, ..., December} a)  $B = \{A, B, C, ..., Z\}$ f: D B, m l = f(m) = initial letter of m
  - b) D = set of all the neighbouring countries of Switzerland B = set of all the European citiesc: D B, x y = c(x) = capital of neighbouring country s

- c) function f in problem 1 g)
- d) function f in problem 1 h)

3.

a)

b)


 $f(x) = x^3 - x$ f: R R, x

Determine the following values:

| i)<br>ii)<br>iv) | f(0)<br>f(1)<br>f(a) | )           |          |                   |
|------------------|----------------------|-------------|----------|-------------------|
| v)<br>g: R       | f(x-<br>\{-1}        | +a)<br>R, x | g(x) =   | $\frac{x^2}{x+1}$ |
| Deter            | rmine t              | he follo    | wing val | ues:              |

g(0) i)

- ii) g(1)
- iv) g(a)
- v) g(x+a)
- 4. The graph of a function f ist given as follows:



- State the value of f(-1). a)
- Estimate the value of f(2). b)
- c) For what values of x is f(x) = 2?
- Estimate the values of x such that f(x) = 0. d)
- State the domain D of f. e)
- f) State the range E of f.

## Answers

1.

2.

| ; | a) | no function |
|---|----|-------------|
| 1 | b) | function    |
|   | c) | no function |
|   | d) | function    |
|   | e) | no function |
| İ | f) | no function |
| 1 | g) | function    |
| ] | h) | function    |
| i | i) | no function |
| j | j) | function    |
|   |    |             |

| a) | $E = \{A, D, F, J, M, N, O, S\}$          |
|----|-------------------------------------------|
| b) | $E = \{Berlin, Wien, Vaduz, Rom, Paris\}$ |
| c) | $\mathbf{E} = \mathbf{B}$                 |

c) 
$$E = B$$
  
d)  $E = R_0^+$ 

3. a)  
i) 
$$f(0) = 0^{3} - 0 = 0$$
  
ii)  $f(1) = 1^{3} - 1 = 0$   
iv)  $f(a) = a^{3} - a$   
v)  $f(x+a) = (x+a)^{3} - (x+a)$   
b)  
i)  $g(0) = \frac{0^{2}}{0+1} = 0$   
ii)  $g(1) = \frac{1^{2}}{1+1} = \frac{1}{2}$   
iv)  $g(a) = \frac{a^{2}}{a+1}$   
v)  $g(x+a) = \frac{(x+a)^{2}}{x+a+1}$ 

4. a) 
$$f(-1) = -2$$
  
b)  $f(2) = 28$ 

b) 
$$I(2) 2.8$$
  
c)  $x_1 = -3, x_2 = 1$ 

d) 
$$x_1 = -3, x_2 = 1$$

a) 
$$x_1 = -2.5, x_2 = 0.5$$

e) 
$$D = \{x \ R \mid -3 \ x \ 3\} = [-3,3]$$

f) 
$$E = \{y \ R \mid -2 \ x \ 3\} = [-2,3]$$