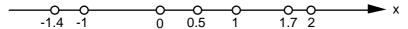
Exercise 1 Sets Intersection, complement, union, number sets

Objectives


- understand what a set, an element of a set, an intersection, a union, a complement is.
- know the set of real numbers, rational numbers, integers, natural numbers.
- be able to perform basic set operations.

Problems

- 1. Look at the sets A, B, and C:
 - A = Set of all the cities of the world
 - B = Set of all the European cities
 - C = Set of all the coastal cities of the world

Find at least four elements of the following sets:

- a) B C
- b) B \ C
- c) $C \setminus B$
- d) $A \setminus (B \setminus C)$
- 2. When calculating we usually deal with **real numbers**. The set \mathbb{R} of real numbers can be thought of as an infinitely long continuous number line. Each point of the number line represents a real number x:

The following number sets are subsets of \mathbb{R} :

- $\mathbb{N} = \text{Set of natural numbers} = \{1, 2, 3, 4, ...\}$
- $\mathbb{Z} = \text{Set of integers} = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$
- $\mathbb{Q} = \text{Set of rational numbers} = \left\{ x \mid x = \frac{m}{n}; m \quad \mathbb{Z}; n \quad \mathbb{Z}; n \quad 0 \right\}$

A rational number x is a number that can be expressed as a fraction $\frac{m}{n}$, where both numerator m and denominator n are integers and n is not zero.

- a) Determine the following sets:
 - i) Z \ N
 - ii) Z N
 - iii) Z N
- b) Decide whether each statement is true or false:
 - i) NZ
 - ii) Z Q
 - iii) Q R
- c) Try to think of numbers that are elements of the set $\mathbb{R} \setminus \mathbb{Q}$

Answers

- 1. a) B C = {Lisbon, Copenhagen, Barcelona, Naples, Stockholm, ...}
 - b) $B \setminus C = \{London, Paris, Madrid, Berlin, Rome, ...\}$
 - c) $C \setminus B = \{Tokyo, San Francisco, Sydney, Rio de Janeiro, ...\}$
 - d) $A \setminus (B \setminus C) = \{Chicago, Mexico City, Nairobi, Beijing, ...\}$
- 2. a) i) $\mathbb{Z} \setminus \mathbb{N} = \{0, -1, -2, -3, ...\}$
 - ii) $\mathbb{Z} \quad \mathbb{N} = \mathbb{Z}$
 - iii) $\mathbb{Z} \quad \mathbb{N} = \mathbb{N}$
 - b) i) true
 - ii) true
 - iii) true
 - c) $\mathbb{R} \setminus \mathbb{Q} = {\sqrt{2}, \sqrt{3}, \dots}$