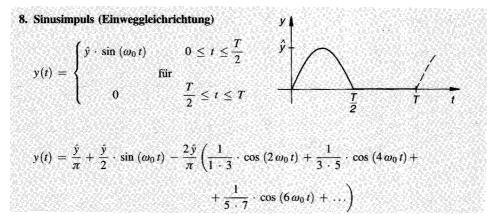
Repetitions-Übung 1 Komplexe Zahlen, Fourier-Reihen, Fourier-Transformation

Aufgaben

1. (Klausur 31.1.2003)

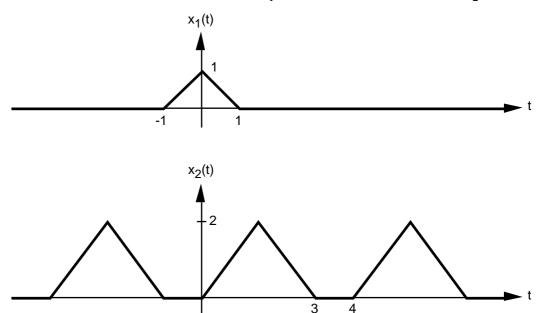
In einer Fourier-Reihen-Tabelle ist die reelle Fourier-Reihe eines Sinusimpulses aufgeführt:



Bestimmen Sie alle komplexen Fourier-Koeffizienten c_k (k $\,$ Z) der Funktion y(t).

2. (Klausur 31.1.2003)

Gegeben sind die Grafen der aperiodischen Funktion $x_1(t)$ und der periodischen Funktion $x_2(t)$:



Die Fourier-Transformierte $X_1(\cdot)$ von $x_1(t)$ sei bekannt.

Drücken Sie die Fourier-Transformierte $X_2(\)$ von $x_2(t)$ durch die Fourier-Transformierte $X_1(\)$ von $x_1(t)$ aus.

Geben Sie den Zusammenhang zwischen $X_2(\)$ und $X_1(\)$ in Form einer Formel $X_2(\)$ = ... an, mit welcher man $X_2(\)$ aus $X_1(\)$ bestimmen kann.

3. (Klausur 1.2.2002)

Bei der Diskretisierung von LTI-Systemen kommt die folgende Funktion f vor:

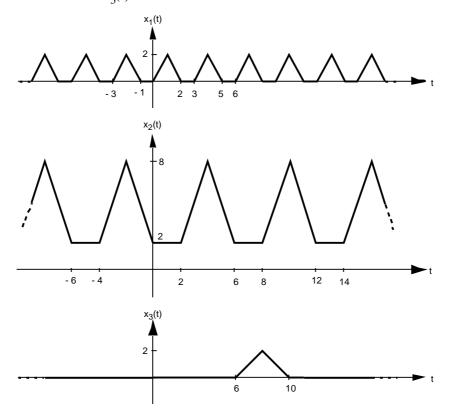
f: C C
$$z = f(s) = \frac{1}{1-sT} (T R^+)$$

Beurteilen Sie mit Begründung, ob die folgende Aussage wahr oder falsch ist:

"Die Funktion f bildet die Menge $\{s \ C \mid Re(s) = 0\}$ auf die Menge $\{z \ C \mid |z| = 1\}$ ab, d.h. jede komplexe Zahl s mit Re(s) = 0 wird auf eine komplexe Zahl z mit |z| = 1 abgebildet."

4. (Klausur 1.2.2002)

Gegeben seien die Grafen der beiden periodischen Funktionen $x_1(t)$ und $x_2(t)$ sowie der Graf der aperiodischen Funktion $x_3(t)$:



a) Es sei angenommen, dass man die Fourier-Transformierte $X_3(\cdot)$ der Funktion $x_3(t)$ kennt.

Drücken Sie die Fourier-Koeffizienten c_{1k} (k Z) der Funktion $x_1(t)$ durch die Fourier-Transformierte $X_3(\cdot)$ der Funktion $x_3(t)$ aus.

Geben Sie den Zusammenhang zwischen den Koeffizienten c_{1k} (k Z) und X_3 () in Form einer Formel c_{1k} = ... an, mit welcher man die Koeffizienten c_{1k} (k Z) aus X_3 () bestimmen kann.

b) Es sei nun angenommen, dass man alle komplexen Fourier-Koeffizienten c_{1k} (k Z) der Funktion $x_1(t)$ kennt.

Drücken Sie die komplexen Fourier-Koeffizienten c_{2k} (k Z) der Funktion x_2 (t) durch die komplexen Fourier-Koeffizienten c_{1k} (k Z) der Funktion x_1 (t) aus.

(Fortsetzung Seite 3)

Geben Sie den Zusammenhang zwischen den Koeffizienten der beiden Funktionen in Form einer Formel $c_{2k} = \dots$ an, mit welcher man die Koeffizienten c_{2k} (k Z) aus den Koeffizienten c_{1k} (k Z) bestimmen kann.

5. (Klausur 2.3.2001)

Gegeben ist die folgende periodische Funktion x(t):

$$x(t) = 2 + \sin(9t) - 3\cos(6t)$$

Die Funktion kann sowohl in eine reelle als auch in eine komplexe Fourier-Reihe entwickelt werden:

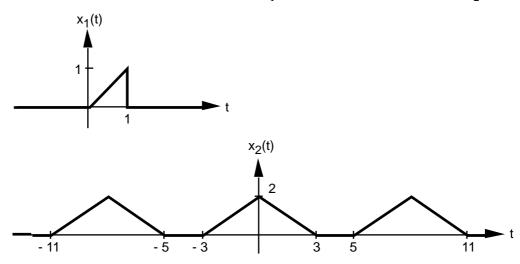
$$x(t) = a_0 + \left(a_k \cdot \cos(k \quad _0 t) + b_k \cdot \sin(k \quad _0 t) \right)$$

$$x(t) = c_k e^{jk} 0^t$$

Bestimmen Sie alle reellen und komplexen Fourier-Koeffizienten a_0 , a_k , b_k und c_k der Funktion x(t).

6. (Klausur 2.3.2001)

Gegeben sind die Grafen der aperiodischen Funktion $x_1(t)$ und der periodischen Funktion $x_2(t)$:



a) Bestimmen Sie die Fourier-Transformierte $X_1(\cdot)$ der Funktion $x_1(t)$ von Hand.

Als Hilfsmittel sind nur eine Integrationstabelle erlaubt, jedoch keine Fourier-Transformations-Tabelle und kein Taschenrechner.

b) Bestimmen Sie die komplexen Fourier-Koeffizienten c_k der Funktion $x_2(t)$ aus der Fourier-Transformierten $X_1(\cdot)$ der Funktion $x_1(t)$.

Sie sollen also die Koeffizienten \mathbf{c}_k weder von Grund auf berechnen noch eine Fourier-Reihen-Tabelle verwenden.

Benützen Sie jedoch die Kenntnis von $\mathbf{X}_1(\)$ sowie die Eigenschaften der Fourier-Transformation.

Betrachten Sie $X_1(\)$ als bekannt, auch wenn Sie in der Augabe a) kein Resultat erhalten haben sollten. Der explizite Ausdruck für $X_1(\)$ ist unwesentlich, da Sie lediglich den Zusammenhang zwischen $X_1(\)$ und den Koeffizienten c_k aufzeigen sollen.

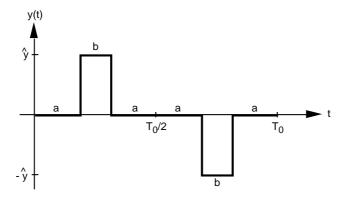
7. (Klausur 8.12.2000)

Beurteilen Sie mit Begründung, ob die folgende Aussage für jede komplexe Zahl z wahr oder falsch ist:

$$|\mathbf{i} \cdot \mathbf{z} + \mathbf{z}^*|^2 = 2 \cdot |\mathbf{z}|^2 - 2 \cdot \text{Im}(\mathbf{z}^2)$$

8. (Klausur 8.12.2000)

In einer Fourier-Reihen-Tabelle ist die folgende periodische Funktion y(t) und deren reelle Fourier-Reihe FR(y(t)) aufgeführt:



$$FR\big(y(t)\big) = \frac{4\hat{y}}{1} \ \frac{\cos(0a)}{1} \sin(0t) + \frac{\cos(30a)}{3} \sin(30t) + \frac{\cos(50a)}{5} \sin(50t) + ...$$

wobei:
$$_0 := \frac{2}{T_0}$$

 $T_0 = Grundperiode$

Prüfen Sie die Fourier-Reihe nach, indem Sie die Fourier-Koeffizienten b_k (= Koeffizienten der Sinus-Glieder) von Hand, d.h. ohne Taschenrechner, berechnen.

Auftretende Integrale müssen nicht auf Grundintegrale zurückgeführt werden, sondern Sie können dazu Integraltafeln verwenden.

Lösungen

2.
$$X_2() = \frac{3}{2}$$
 $e^{-jk(3/4)} X_1 \left(k \frac{3}{4}\right) \left(-k \frac{3}{2}\right)$

3. falsch

4. a)
$$c_{1k} = \frac{1}{6} X_3 \left(k \frac{1}{3} \right)$$
b)
$$c_{2k} = \begin{array}{c} 3 c_{10} + 2 & (k=0) \\ 3 e^{-jk(2/3)} c_{1k} & (k 0) \end{array}$$

5.
$$a_0 = 2$$

$$b_3 = 1$$

$$c_0 = 2$$

$$c_2 = -\frac{3}{2}$$

$$c_{-2} = -\frac{3}{2}$$

$$c_3 = -\frac{i}{2}$$

$$c_{-3} = \frac{i}{2}$$

$$a_k = 0 \ (k \ 2)$$

$$b_k = 0 \ (k \ \pm 2, \pm 3)$$

6. a)
$$X() = \begin{cases} -\frac{1}{2} \left(e^{-j} \left(-j - 1 \right) + 1 \right) & (0) \\ \frac{1}{2} & (=0) \end{cases}$$
 b)
$$c_k = \frac{3}{4} e^{jk(3/4)} X_1 \left(k \frac{3}{4} \right) + e^{-jk(3/4)} X_1 \left(-k \frac{3}{4} \right)$$

7. wahr

8.
$$b_k = \begin{array}{c} 0 & \text{(k gerade)} \\ \frac{4\hat{y}}{k}\cos(k \ 0^a) & \text{(k ungerade)} \end{array}$$