Integral-Tabelle

Grund-/Stammintegrale

Quelle: Lothar Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 1, Vieweg, Wiesbaden 2009, ISBN 978-3-8348-0545-4, Tabelle Seite 445

$\int 0 dx = C$	$\int 1 dx = x + C$
$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad (n \neq -1)$	$\int \frac{1}{x} dx = \ln x + C$
(Potenzregel)	
$\int e^x dx = e^x + C$	$\int a^x dx = \frac{a^x}{\ln a} + C$
$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$
$\int \frac{1}{\cos^2 x} dx = \tan x + C$	$\int \frac{1}{\sin^2 x} dx = -\cot x + C$
$\int \frac{1}{\sqrt{1-x^2}} dx = \begin{cases} \arcsin x + C_1 \\ -\arccos x + C_2 \end{cases}$	$\int \frac{1}{1+x^2} dx = \begin{cases} \arctan x + C_1 \\ -\operatorname{arccot} x + C_2 \end{cases}$
$\int \sinh x dx = \cosh x + C$	$\int \cosh x dx = \sinh x + C$
$\int \frac{1}{\cosh^2 x} dx = \tanh x + C$	$\int \frac{1}{\sinh^2 x} dx = -\coth x + C$
$\int \frac{1}{\sqrt{x^2 + 1}} dx = \operatorname{arsinh} x + C = \ln \left x + \sqrt{x^2 + 1} \right + C$	
$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{arcosh} x + C = \ln x + \sqrt{x^2 - 1} + C \qquad (x > 1)$	
$\int \frac{1}{1 - x^2} dx = \begin{cases} \operatorname{artanh} x + C_1 = \frac{1}{2} \cdot \ln\left(\frac{1 + x}{1 - x}\right) + C_1 & x < 1\\ \operatorname{für} & \operatorname{für} \\ \operatorname{arcoth} x + C_2 = \frac{1}{2} \cdot \ln\left(\frac{x + 1}{x - 1}\right) + C_2 & x > 1 \end{cases}$	