Übung 4 **Funktionen** Grundbegriffe, Verknüpfung von Funktionen

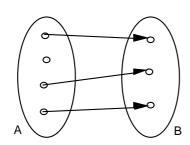
Lernziele

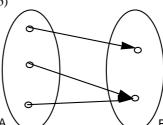
- verstehen, was eine Funktion ist.
- beurteilen können, ob eine gegebene Zuordnung eine Funktion ist oder nicht.
- die Funktionsvorschrift einer Funktion korrekt formulieren können.
- eine Funktion in einem Pfeildiagramm, in einer Tabelle darstellen können.
- den Bildbereich einer gegebenen Funktion bestimmen können.
- Funktionswerte einer gegebenen Funktion bestimmen können.
- die Verknüpfung zweier Funktionen bilden können.
- eine gegebene Funktion als Verknüpfung zweier Funktionen darstellen können.
- eine neue Problemstellung bearbeiten können.

Aufgaben

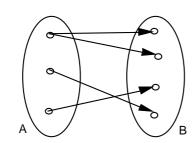
1. Beurteilen Sie mit Begründung, welche der folgenden Zuordnungen eine Funktion A B ist:

a)

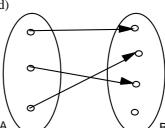




c)



d)



- A = Menge aller Häuser, B = Menge aller ArchitektInnen e)
 - B, h a = f(h) = ArchitektIn von h
- A = Menge aller Vereine in der Schweiz, B = Menge aller SchweizerInnen f)
 - B, x $y = p(x) = Pr\ddot{a}sidentIn von x$
- $A = \{1976, 1977, \dots, 1985, 1986\}$ g)
 - B = Menge aller 20- bis 30-jährigen Menschen
 - m = f(j) = Mensch mit Jahrgang jB, j
- A = Menge aller 20- bis 30-jährigen Menschen h)
 - $B = \{1976, 1977, \dots, 1985, 1986\}$
 - j: A B, m j = j(m) = Jahrgang von Mensch m
- R, x $y = f(x) = x^2$ f: R i)
- f: R j) R, x y = f(x) = Zahl, welche quadriert gleich x ergibt
- f: N N, x y = f(x) = Ganzzahliger Teiler von xk)

2. Gegeben sind die Mengen A und B.

Machen Sie einen Vorschlag für eine Funktion A B.

- i) Geben Sie die Funktionsvorschrift an.
- ii) Stellen Sie die Funktion in einem Pfeildiagramm dar.
- iii) Stellen Sie die Funktion in einer Tabelle dar.
- a) A = Menge aller Tage des Jahres 2003 B = R
- b) A = Menge aller Schweizer Firmen B = Menge aller Schweizer Kantone
- c) A = Menge aller Vierecke B = Menge aller Dreiecke
- d) $A = \{-3, 1, 4, 7, 11, 14\}$ $B = \{-6, 2, 8, 14, 22, 28\}$
- e) $A = R^{-}$ $B = R^{+}$

3. Bestimmen Sie den Bildbereich W der folgenden Funktionen:

- a) A = {Januar, Februar, März, ..., Dezember}
 - $B = \{A, B, C, ..., Z\}$
 - f: A B, m b = f(m) = Anfangsbuchstabe des Monats m
- b) A = Menge aller Nachbarländer der Schweiz
 - B = Menge aller europäischen Städte
 - h: A B, n s = h(n) = Hauptstadt des Nachbarlandes n
- c) A = R
 - $B = R_0^{\dagger}$
 - b: A B, x y = b(x) = |x|
- d) Funktion f aus Aufgabe 1 h)
- e) Funktion f aus Aufgabe 1 i)

4. Gegeben ist die Funktion f: R = R, x = f(x)

- a) $f(x) = x^3 x$
- $f(x) = \frac{x^2}{x+1}$

Bestimmen Sie jeweils die folgenden Funktionswerte:

- i) f(0)
- ii) f(1)
- iii) f(-1)

- iv) f(a)
- v) f(x+a)

5. Gegeben sind die beiden Funktionen f und g.

Bestimmen Sie die verknüpfte Funktion h = g ° f

- a) f: R R, x $y = f(x) = x^2$
 - g: R R, y z = g(y) = -2y
- b) f: R R, x $y = f(x) = \sin(x)$
 - g: R R, y $z = g(y) = \frac{y}{v^2 + 1}$
- c) (siehe Seite 3)

c) f:
$$R\setminus\{-1\}$$
 $R\setminus\{0\}$, x $y = f(x) = \frac{2}{x+1}$ g: $R\setminus\{0\}$ R , y $z = g(y) = \frac{2}{y} - 1$

d) f: R R, x
$$y = f(x) = \frac{1}{x^2+1}$$

g = f

- e) A = Menge aller Studierenden der HTW Chur
 - B = Menge aller Länder der Erde

C = N (= Menge aller natürlichen Zahlen)

- f: A B, s l = f(s) = Herkunftsland des Studierenden sg: B C, l e = g(l) = Einwohnerzahl des Landes l
- 6. Gegeben ist die Funktion h.

Fassen Sie die Funktion h als Verknüpfung zweier Funktionen f und g auf, d.h. $h=g\,^\circ$ f, und geben Sie die beiden Funktionen f und g an.

a) h: R R, x
$$z = h(x) = e^{-2x}$$

- b) h: N R, x $z = h(x) = (x-1) \cdot \sin(2x)$
- c) h: R R, x z = h(x) = x
- d) A = Menge aller Autobahntunnels im Kanton Graubünden

C = Menge aller Tage eines Jahres

h: A C, t d = h(t) = Osterdatum im Einweihungsjahr des Autobahntunnels t

7. Beurteilen Sie mit schlüssiger Begründung, ob die Verknüpfung zweier Funktionen kommutativ ist, d.h. ob gilt: $g \circ f = f \circ g$

Hinweis: Betrachten Sie Beispiele aus den Aufgaben 5 und 6.

Lösungen

- 1. a) keine Funktion (Zuordnung nicht definiert für alle a A)
 - b) Funktion
 - keine Funktion (Zuordnung nicht eindeutig) c)
 - d) Funktion
 - e) keine Funktion (f nicht oder nicht eindeutig definiert für alle h A)
 - f) keine Funktion (p nicht definiert für alle x A)
 - keine Funktion (f nicht eindeutig) g)
 - h) **Funktion**
 - i) Funktion
 - j) keine Funktion (f nicht eindeutig)
 - k) keine Funktion (f nicht eindeutig)
- 2. m: A B, d T = m(d) = Maximal temperatur in Chur am Tage da) i)
 - ii)
 - iii)
 - b) i) s: A B, f k = s(f) = Kanton, an welchen f die meisten Steuern zahlen muss
 - ii)
 - iii)
 - c) f: A B, v d = f(v) = gleichseitiges Dreieck mit gleichem Flächeninhalt wie v i)
 - ii) ...
 - iii)
 - d) i) f: A B, x y = f(x) = 2x
 - ii)
 - iii)
 - y = f(x) = -xe) i) f: A B, x
 - ii)
 - iii)
- 3. $W = \{A, D, F, J, M, N, O, S\}$ a)
 - W = {Berlin, Wien, Vaduz, Rom, Paris} b)
 - c) W = B
 - W = Bd)
 - $W = R_0^+$ e)
- $f(0) = 0^3 0 = 0$ 4. i) ii) a) $f(-1) = (-1)^3 - (-1) = 0$ iii) iv)
 - $f(x+a) = (x+a)^3 (x+a)$ v)
 - $f(1) = \frac{1^2}{1+1} = \frac{1}{2}$ $f(a) = \frac{a^2}{a+1}$ $f(0) = \frac{0^2}{0+1} = 0$ b) i) ii)
 - $f(-1) = \frac{(-1)^2}{-1+1}$ nicht definiert $f(x+a) = \frac{(x+a)^2}{x+a+1}$ iv)

 $f(1) = 1^3 - 1 = 0$

 $f(a) = a^3-a$

5. a) h: R R, x
$$z = h(x) = g(f(x)) = -2x^2$$

b) h: R R, x
$$z = h(x) = g(f(x)) = \frac{\sin(x)}{\sin^2(x)+1}$$

c) h:
$$R \setminus \{-1\}$$
 R, x $z = h(x) = g(f(x)) = x$

d) h: R R, x
$$z = h(x) = f(f(x)) = \frac{(x^2+1)^2}{1 + (x^2+1)^2}$$

e) h: A C, s e = h(s) = g(f(s)) = Einwohnerzahl des Herkunftslandes des Studierenden s

6. a) f: R R, x
$$y = f(x) = -2x$$

g: R R, y $z = g(y) = e^{y}$

b) f: N Z, x
$$y = f(x) = x-1$$

g: Z R, y $z = g(y) = y \cdot \sin(2(y+1))$

c) f: R R, x
$$y = f(x) = 2x$$

g: R R, y $z = g(y) = \frac{y}{2}$

d) B = Menge aller Jahre von 1900 bis heute

f: A B, t j = f(t) = Einweihungsjahr des Autobahntunnels t g: B C, j d = g(j) = Osterdatum im Jahr j

7. ...