Übung 4 Funktionen Umkehrfunktion

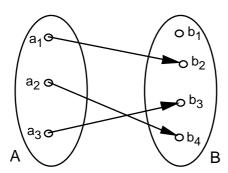
Lernziele

- beurteilen können, ob eine Funktion bijektiv ist oder nicht.
- die zu einer einfacheren bijektiven Funktion gehörige Umkehrfunktion bestimmen können.
- die Eigenschaften des Grafen einer bijektiven Funktion kennen und verstehen.
- den Zusammenhang zwischen dem Grafen einer bijektiven Funktion und dem Grafen der dazugehörigen Umkehrfunktion verstehen.
- die Umkehrfunktion einer linearen Funktion bestimmen können.

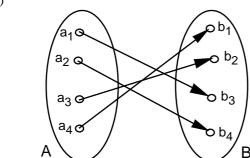
Aufgaben

1. Beurteilen Sie mit schlüssiger Begründung, welche der folgenden Funktionen bijektiv sind:

a)



b)



- c) f: R^+ R^+ , $x = y = f(x) = x^2$
- d) f: R R_0^+ , x $y = f(x) = x^2$
- e) $A = \{Vater, Mutter, Sohn, Tochter\}, B = \{1948, 1976, 1950, 1978\}$
 - f: A B, x y = f(x) = Jahrgang von x
 - i) Vater hat Jahrgang 1948, Mutter hat Jahrgang 1950, Sohn hat Jahrgang 1976, Tochter hat Jahrgang 1978
 - ii) Vater hat Jahrgang 1948, Mutter hat Jahrgang 1950, Sohn hat Jahrgang 1975, Tochter hat Jahrgang 1978
 - iii) Vater hat Jahrgang 1948, Mutter hat Jahrgang 1950, Sohn und Tochter haben Jahrgang 1978
- f) A = Menge aller 20- bis 30-jährigen Menschen, B = $\{1974, 1975, ..., 1983, 1984\}$ f: A B, x y = f(x) = Jahrgang von x
- g) A = Menge aller Schweizer Vereine, B = Menge aller Menschen f: A B, x <math>y = f(x) = PräsidentIn von x

2. Die Funktionen in den Aufgaben 1 e) iii) und 1 g) sind nicht bijektiv.

Machen Sie für diese beiden Funktionen je einen Vorschlag, wie man die Definitionsmenge A und/oder die Zielmenge B einschränken müsste, um eine bijektive Funktion zu erhalten.

- 3. Bestimmen Sie die Umkehrfunktion f⁻¹ aller bijektiven Funktionen der Aufgabe 1.
- 4. Gegeben sei der Graf einer bijektiven Funktion f: R R, x y = f(x)
 - a) Beschreiben Sie die Eigenschaft(en), die der Graf besitzt im Gegensatz zum Grafen einer Funktion, die nicht bijektiv ist.
 - b) Skizzieren Sie den Grafen der zu f gehörigen Umkehrfunktion f^{-1} : R R, y $x = f^{-1}(y)$.
- 5. Die allgemeine Form einer linearen Funktion f lautet

f: R R, x
$$y = f(x) = mx + q$$

Die dazugehörige Umkehrfunktion f⁻¹ lautet (siehe Unterricht)

f⁻¹: R R, x
$$y = f^{-1}(x) = \frac{1}{m}x + \frac{q}{m}$$

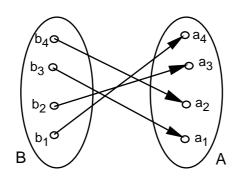
Zeigen Sie, dass f⁻¹ tatsächlich die Umkehrfunktion zu f ist, d.h. dass gilt:

$$f^{-1}(f(x)) = x$$

- 6. Bearbeiten Sie für jede gegebene lineare Funktion f die folgenden Teilaufgaben:
 - i) Skizzieren Sie den Grafen von f.
 - ii) Geben Sie die Umkehrfunktion f⁻¹ von f an.
 - iii) Skizzieren Sie den Grafen der Umkehrfunktion f⁻¹.
 - a) f: R R, x y = f(x) = 3x 2
 - b) f: R R, x y = f(x) = -x + 4
 - c) f: R R, x y = f(x) = x
 - d) f: R R, x y = f(x) = 3

Lösungen

- 1. a) nicht bijektiv (Nicht jedes b B ist Bildelement.)
 - b) bijektiv
 - c) bijektiv
 - d) nicht bijektiv (Jedes y R_0^+ (ausser y=0) ist Bildelement von zwei x R.)
 - e) i) bijektiv
 - ii) keine Funktion (1975 B)
 - iii) nicht bijektiv (1976 tritt nicht als Bildelement auf, 1978 tritt zweimal als Bildelement auf.)
 - f) nicht bijektiv (Die Elemente in B treten mehrfach als Bildelemente auf.)
 - g) nicht bijektiv (Nicht jeder Mensch ist PräsidentIn eines Schweizer Vereins.)
- 2. 1 e) iii) A' = {Vater, Mutter, Tochter} B' = {1948, 1950, 1978}
 - 1 g) A' = A
 B' = Menge aller Menschen, die PräsidentIn von genau einem Schweizer Verein sind
- 3. 1 b)



- 1 c) f^{-1} : R^+ R^+ , y $x = f^{-1}(y) = \sqrt{y}$
- 1 e) i) $A = \{Vater, Mutter, Sohn, Tochter\}, B = \{1948, 1976, 1950, 1978\}$ $f^{-1}: B \quad A, y \quad x = f^{-1}(y) = Person, deren Jahrgang y ist$
- 4. a) ...
 - b) ...
- 5. a) i) ...
 - ii) f^{-1} : R R, x $y = f^{-1}(x) = \frac{1}{3}x \frac{2}{3}$
 - iii) ...
 - b) i) ... ii) f^{-1} : R R, x $y = f^{-1}(x) = -x - 4$
 - iii) ..
 - c) i) ... ii) f^{-1} : R R, x $y = f^{-1}(x) = x$
 - iii) ..
 - d) i) .
 - ii) f⁻¹ existiert nicht, da f nicht bijektiv ist.
 - iii) (hinfällig)