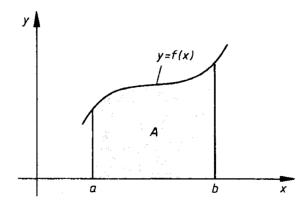
Definite integral

Area under a curve

f: D
$$\rightarrow \mathbb{R}$$
 $(D \subseteq \mathbb{R})$
 $x \mapsto y = f(x)$

Suppose that $f(x) \ge 0$ on the interval $a \le x \le b$:



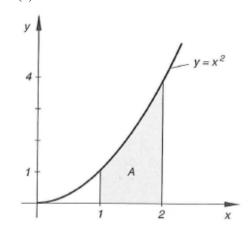
A = area between the graph of f and the x-axis on the interval $a \le x \le b$

Definition

The area A between the graph of f and the x-axis on the interval $a \le x \le b$ is the **definite integral** of f from a to b, denoted $\int_a^b f(x) dx$.

$$A = \int_a^b f(x) dx$$

Ex.:
$$f(x) = x^2$$



$$A = \int_1^2 x^2 \ dx$$

Fundamental theorem of calculus

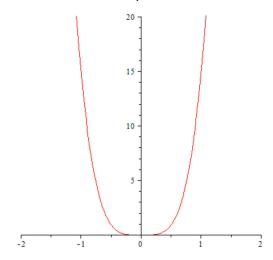
 $\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a) \quad \text{where F is any antiderivative of f}$

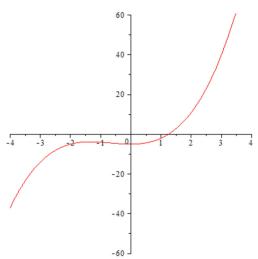
Ex.: 1.
$$f(x) = x^{2}, a = 1, b = 2$$

$$\int_{1}^{2} x^{2} dx = \left[\frac{1}{3}x^{3}\right]_{1}^{2} = \frac{1}{3}2^{3} - \frac{1}{3}1^{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} = 2.\overline{3}$$
or:
$$\int_{1}^{2} x^{2} dx = \left[\frac{1}{3}x^{3}\right]_{1}^{2} = \frac{1}{3}[x^{3}]_{1}^{2} = \frac{1}{3}(2^{3} - 1^{3}) = \frac{7}{3} = 2.\overline{3}$$

2.
$$\int_0^2 x^3 dx = \left[\frac{1}{4}x^4\right]_0^2 = \frac{1}{4}\left[x^4\right]_0^2 = \frac{1}{4}\left(2^4 - 0^4\right) = 4$$

3.
$$\int_{-1}^{1} 15x^4 dx = \left[15 \cdot \frac{1}{5}x^5\right]_{-1}^{1} = 3\left[x^5\right]_{-1}^{1} = 3\left(1^5 - (-1)^5\right) = 6$$





Consumer's Surplus

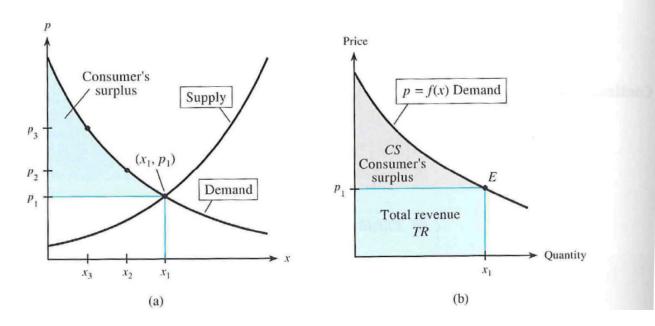
Suppose that the demand for a product is given by p = f(x) and that the supply of the product is described by p = g(x). The price p_1 where the graphs of these functions intersect is the **equilibrium price** (see Figure 13.21(a)). As the demand curve shows, some consumers (but not all) would be willing to pay more than p_1 for the product.

For example, some consumers would be willing to buy x_3 units if the price were p_3 . Those consumers willing to pay more than p_1 are benefiting from the lower price. The total gain for all those consumers willing to pay more than p_1 is called the **consumer's surplus**, and under proper assumptions the area of the shaded region in Figure 13.21(a) represents this consumer's surplus.

Looking at Figure 13.21(b), we see that if the demand curve has equation p = f(x), the consumer's surplus is given by the area between f(x) and the x-axis from 0 to x_1 , minus the area of the rectangle denoted TR:

$$CS = \int_0^{x_1} f(x) \, dx - p_1 x_1$$

Note that with equilibrium price p_1 and equilibrium quantity x_1 , the product p_1x_1 is the area of the rectangle that represents the total dollars spent by consumers and received as revenue by producers (see Figure 13.21(b)).



from: Harshbarger/Reynolds: Mathematical applications for the management, life, and social sciences Houghton Mifflin Company 2007, ISBN 978-0-618-73162-6 p. 904

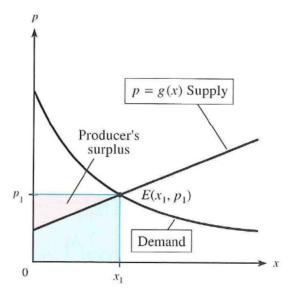
Producer's Surplus

When a product is sold at the equilibrium price, some producers will also benefit, for they would have sold the product at a lower price. The area between the line $p = p_1$ and the supply curve (from x = 0 to $x = x_1$) gives the producer's surplus (see Figure 13.23).

If the supply function is p = g(x), the **producer's surplus** is given by the area between the graph of p = g(x) and the x-axis from 0 to x_1 subtracted from the area of the rectangle $0x_1Ep_1$.

$$PS = p_1 x_1 - \int_0^{x_1} g(x) \, dx$$

Note that p_1x_1 represents the total revenue at the equilibrium point.



from: Harshbarger/Reynolds: Mathematical applications for the management, life, and social sciences Houghton Mifflin Company 2007, ISBN 978-0-618-73162-6 p. 906, 907