Increasing/decreasing, concavity

Ex.: $f(x) = x^3 - 7x - 6$

Increasing/decreasing

If the **first derivative** of a function f is **positive** at $x = x_0$, i.e. f '(x₀) > 0, f is **increasing** at $x = x_0$.

If the **first derivative** of a function f is **negative** at $x = x_0$, i.e. f '(x₀) < 0, f is **decreasing** at $x = x_0$.

Note: The reverse is also true:

If a function f is increasing at $x = x_0$, the first derivative of f at $x = x_0$ is positive, i.e. $f'(x_0) > 0$.

If a function f is decreasing at $x = x_0$, the first derivative of f at $x = x_0$ is negative, i.e. f '(x₀) < 0.

Concavity

If the **second derivative** of a function f is **positive** at $x = x_0$, i.e. f "(x₀) > 0, the graph of f is **concave up** ("left-hand bend") at $x = x_0$.

If the **second derivative** of a function f is **negative** at $x = x_0$, i.e. f "(x_0) < 0, the graph of f is **concave down** ("right-hand bend") at $x = x_0$.

Note: Here, the reverse is **not** true:

If the graph of a function f is concave up at $x = x_0$ ("left-hand bend"), the second derivative of f is not necessarily positive, but can be positive or equal to zero, i.e. $f''(x_0) > 0$ or $f''(x_0) = 0$.

If the graph of a function f is concave down at $x = x_0$ ("right-hand bend"), the second derivative of f is not necessarily negative, but can be negative or equal to zero, i.e. $f''(x_0) < 0$ or $f''(x_0) = 0$.

Local maxima/minima

A function f has a **local maximum** at $x = x_0$ if the tangent to the graph of f at $x = x_0$ is horizontal and if the graph of f is concave down ("right-hand bend") at $x = x_0$.

This applies if $f'(x_0) = 0$ (necessary condition) and $f''(x_0) < 0$ (sufficient condition).

A function f has a **local minimum** at $x = x_0$ if the tangent to the graph of f at $x = x_0$ is horizontal and if the graph of f is concave up ("left-hand bend") at $x = x_0$.

This applies if $f'(x_0) = 0$ (necessary condition) and $f''(x_0) > 0$ (sufficient condition).

Global maximum/minimum

 The **global maximum/minimum** of a continuous function f is either a local maximum/minimum of f or the value of f at one of the endpoints of the domain.

Points of inflection

A function f has a **point of inflection** at $x = x_0$ if the graph of f changes its concavity from concave up to concave down (or vice versa) at $x = x_0$.

This applies if $f''(x_0) = 0$ (necessary condition) and $f'''(x_0) \neq 0$ (sufficient condition).

Ex.: (see next page)

Ex.:

\n
$$
f(x) = x^3 - 7x - 6 \text{ (see page 1)}
$$
\n
$$
\Rightarrow f'(x) = 3x^2 - 7
$$
\n
$$
\Rightarrow f''(x) = 6x
$$
\n
$$
\Rightarrow f'''(x) = 6
$$

Local maxima/minima

$$
f'(x) = 0
$$
 at $x_1 = \sqrt{\frac{7}{3}} = 1.52...$ and $x_2 = -\sqrt{\frac{7}{3}} = -1.52...$
\n $f''(x_1) = 6 \cdot \sqrt{\frac{7}{3}} = 9.16... > 0$ \Rightarrow local minimum at $x_1 = \sqrt{\frac{7}{3}}$
\n $f''(x_2) = -6 \cdot \sqrt{\frac{7}{3}} = -9.16... < 0$ \Rightarrow local maximum at $x_2 = -\sqrt{\frac{7}{3}}$

Global maximum/minimum

Ex.:
$$
D = \{x: x \in \mathbb{R} \text{ and } 0 \le x \le 4\}
$$
 \Rightarrow global maximum at $x = 4$ (endpoint of domain)

\n \Rightarrow global minimum at $x = x_1 = \sqrt{\frac{7}{3}}$ (local minimum)\nEx.: $D = \{x: x \in \mathbb{R} \text{ and } -4 \le x \le 3\}$ \Rightarrow global maximum at $x = x_2 = -\sqrt{\frac{7}{3}}$ (local maximum)

\n \Rightarrow global minimum at $x = -4$ (endpoint of domain)

Points of inflection

$$
f''(x) = 0 \text{ at } x_3 = 0
$$

f'''(x₃) = 6 \neq 0 \Rightarrow point of inflection at x₃ = 0

Financial mathematics

Marginal cost / Marginal revenue / Marginal profit function

= first derivative of the cost/revenue/profit function

Average cost / Average revenue / Average profit function

