
Derivative

Function f

 $f \colon \: D \to \mathbb{R} \qquad \quad \text{where } D \subseteq \mathbb{R}$

 $x \mapsto y = f(x)$

Ex.: $f(x) = 24\sqrt{x+1} - 2x - 60$

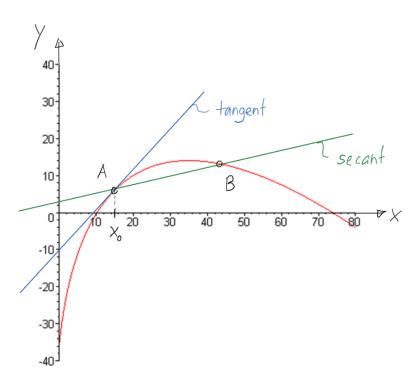
What do we want to know?

Slope of the tangent to the graph of the function f at a certain point $A(x_0 | f(x_0))$.

Why do we want to know the slope?

- rate of change of values y with respect to x
- increasing (slope > 0), decreasing (slope < 0)
- local maximum/minimum (slope = 0)
- concavity (concave up if slope increases, concave down if slope decreases), points of inflection

Applications in economics


- tendency of costs/revenue/profit
- maximum/minimum of costs/revenue/profit
- marginal costs/revenue/profit: change of costs/revenue/profit if x (number of items or quantity of service) increases by one unit

Definition

The slope of the tangent to the graph of f through the point $A(x_0 | f(x_0))$ is called the **derivative** (or **rate of change**) **of f at x₀**, denoted $f'(x_0)$ ("f prime of x_0 ").

How can we determine the slope?

The slope of the **secant** through the points $A(x_0 | f(x_0))$ and $B(x_0+\Delta x | f(x_0+\Delta x))$ tends towards the slope of the **tangent** through $A(x_0 | f(x_0))$ as Δx tends towards 0.

Ex.:
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$
 $f'(x_0) = 2x_0$ (without proof)

Ex.: f: D \rightarrow \mathbb{R}

$$x \mapsto y = f(x) = 24\sqrt{x+1} - 2x - 60$$

 $f'(x_0) = \frac{12}{\sqrt{x_0 + 1}} - 2$ (without proof)

Definition

Suppose that the derivative (rate of change) $f'(x_0)$ exists for all $x_0 \in D_1$, where $D_1 \subseteq D$.

The function f'

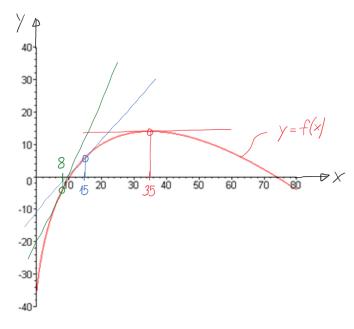
 $f': D_1 \to \mathbb{R}$

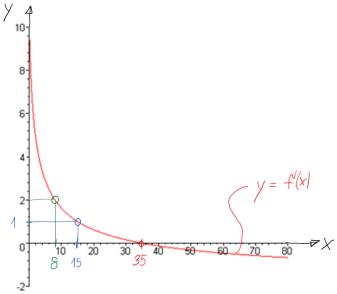
$$x \mapsto y = f'(x)$$

is called the derivative (or derived function) of f.

Ex.: $f: \mathbb{R} \to \mathbb{R}$

 $x \mapsto y = f(x) = x^2$


 $f': \mathbb{R} \to \mathbb{R}$


$$x \mapsto y = f'(x) = 2x$$

Ex.: $f: D \to \mathbb{R}$

 $x \mapsto y = f(x) = 24\sqrt{x+1} - 2x - 60$

$$\begin{array}{ccc} f' \colon \ D_1 \to \mathbb{R} \\ x \ \mapsto \ y = f'(x) = \frac{12}{\sqrt{x+1}} - 2 \end{array}$$

