Exercises 12 Differentiation rules Coefficient, sum, product, exponential function, higher-order derivatives

Objectives

- be able to apply the coefficient, sum, and product rules to determine the derivative of a function.
- be able to determine a higher-order derivative of a function.

Problems

12.1 Determine the derivative by applying the **coefficient rule**:

a)
$$f(x) = 3x^5$$

b)
$$f(x) = -4x^3$$

c)
$$f(x) = -x^{10}$$

d)
$$f(x) = a \cdot x^3$$

e)
$$f(x) = n \cdot x^{n-1}$$

f)
$$f(x) = 9.3^x$$

g)
$$s(t) = \frac{1}{2}g \cdot t^2$$

h)
$$S(T) = \alpha \cdot T^4$$

i)
$$C(x) = (-3x)^3$$

12.2 Determine the derivative by applying the **sum rule**:

a)
$$f(x) = x^5 + x^6$$

$$f(x) = x^{10} - x^9$$

c)
$$f(x) = 1 + x + 3x^3$$

d)
$$f(x) = \frac{1}{4}x^4 + 3x^2 - 2$$
 e) $f(x) = 3x^2(x - 2)$ f)

$$f(x) = 3x^2(x - 2)$$

f)
$$f(x) = -3x^8 + x^5 - 3x + 99$$

g)
$$f(x) = ax^2 + bx + c$$

$$f(x) = ax^2 + bx + c$$
 h) $f(x) = 3(a^2 - 2ax + x^2)$ i) $f(x) = \frac{x^3}{3} - \frac{3}{x^3}$

$$f(x) = \frac{x^3}{3} - \frac{3}{x^3}$$

$$j) \hspace{1cm} s(t) = s_0 + v_0 t + \frac{1}{2} g \cdot t^2 \hspace{1cm} k) \hspace{1cm} V(r) = -\frac{a}{r} + \frac{b}{r^2} \label{eq:volume}$$

$$V(r) = -\frac{a}{r} + \frac{b}{r^2}$$

1)
$$C(n) = C_0(1 + nr)$$

- In some problems, the coefficient rule is needed, too.
- 12.3 Determine the derivative by applying the **product rule**:

a)
$$f(x) = x \cdot e^x$$

$$f(x) = x^3 \cdot 3^x$$

c)
$$f(x) = -2x^5(x-1)$$

d)
$$f(x) = (2x - 1) \cdot e^x$$

e)
$$f(x) = (2x - 1)(-3x^2 - x + 1)$$

f)
$$V(r) = e^{r} \left(a \cdot r^{2} - \frac{b}{r^{3}} \right)$$

Hint:

- In some problems, the coefficient and/or the sum rule(s) is/are needed, too.
- 12.4 Determine the derivative of the exponential functions below:

a)
$$f(x) = e^{4x}$$

b)
$$f(x) = e^{-x}$$

c)
$$f(x) = e^{-x^2}$$

d)
$$f(x) = e^{x^2-2x+5}$$

12.5 Determine the derivative of the functions below. Apply the appropriate differentiation rule(s). Simplify and factorise the derivative as far as possible:

a)
$$f(x) = (x - 2) e^{2x}$$

b)
$$f(x) = (2 - x^2) e^{-x}$$

c)
$$f(x) = (3x^3 - 2x^2 + x - 1) e^{-2x}$$

d)
$$P(v) = av^2 e^{-bv^2}$$

12.6 (see next page)

12.6	Determine the derivatives (rates of change) below:					
	a)	f'(2)	with function f in 12.1 b)			
	b)	s'(4)	with function s in 12.1 g))		
	c)	f'(-1)	with function f in 12.2 g)			
	d)	P'(1)	with function P in 12.5 d)		
12.7			econd and third derivatives	of the functions	below. Simplify and factorise the hig	her-order
	a)	Function	on f in 12.1 a)	b)	Function f in 12.2 g)	
	c)	Function	on f in 12.3 a)	d)	Function f in 12.4 c)	
	Hint: - You have already determinded the first derivatives of the corresponding functions.					
12.8	Determine the indicated higher-order derivatives:					
	a)	f"(-1) with function f in 12.1 a)				
		Hint: - You have already determined f "(x) in 12.7 a).				
	b)	f'''(2) with function f in 12.4 c)				
		Hint: - You l	nave already determined f"	'(x) in 12.7 d).		
12.9	Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.					
	a)	The third derivative of a function is a				
		constant function if the second derivative is a quadratic function.				
		quadratic function if the second derivative is a linear function.				
		linear function if the first derivative is a quadratic function.				
			constant function if the	is a quadratic function.		
	b) The derivative of a					
		product is the product of the derivatives of the single factors.				
		product is the sum of the derivatives of the single factors.				
			sum is the sum of the o	lerivatives of the	single addends.	
			constant is the constan	t itself.		
	c) If $f(x) = c \cdot g(x) \cdot h(x)$ then $f'(x) =$					
			0			
			$c \cdot g'(x) \cdot h'(x)$			
			$c \cdot g(x) \cdot h'(x) + c \cdot g'(x) \cdot h(x)$	(x)		
			$c \cdot g'(x) \cdot h'(x) + c \cdot g(x) \cdot h(x)$	(x)		