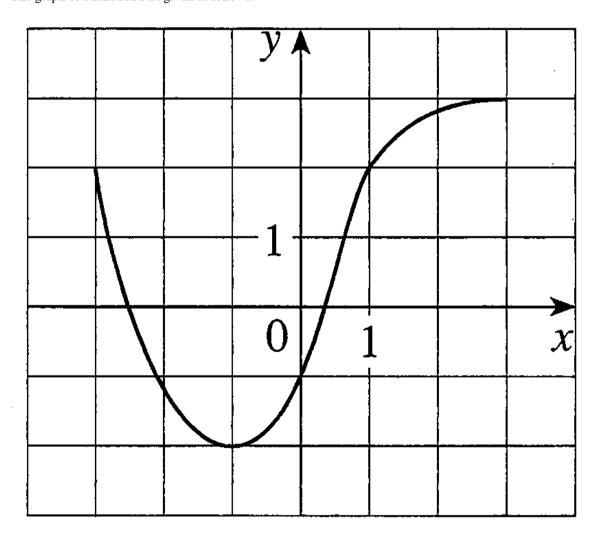
Exercises 11 Derivative


Derivative (rate of change), derivative (derived function) of constant/power/exponential functions

Objectives

- be able to estimate a derivative (rate of change) out of the graph of a function.
- be able to state the derivative (rate of change) of a constant and a linear function.
- be able to determine the derivative (derived function) of a constant and a linear function.
- be able to determine the derivative (derived function) of a basic power and a basic exponential function.
- be able to determine a derivative (rate of change) of a basic power and a basic exponential function.

Problems

11.1 The graph of a function f ist given as follows:

Estimate the derivative (rate of change) $f'(x_0)$ at the given position x_0 :

- a) $x_0 = -1$
- b) $x_0 = 0$
- c) $x_0 = 1$
- d) $x_0 = -2$

Hints:

- Draw the tangent to the graph of f at the given position x_0 .
- Choose any two points on the tangent, and estimate their coordinates.
- Determine the slope of the tangent out of the estimated coordinates of the two points.

11.2 For each of the following functions f: $\mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x) = ...$

- i) ... draw the graph of f.
- ii) ... state the derivative (rate of change) $f'(x_0)$ at the given position x_0 .
- f(x) = 3a)

- $x_0 = 2$
- b) $f(x) = c \ (c \in \mathbb{R})$
- any $x_0 \in \mathbb{R}$

any $x_0 \in \mathbb{R}$

f(x) = 2x - 3c)

- $x_0 = 4$
- d) $f(x) = mx + q \ (m \in \mathbb{R} \setminus \{0\}, q \in \mathbb{R})$

Hint:

- If the graph of a function f is a straight line, the derivative (rate of change) f'(x₀) is the slope of that straight line, i.e f'(x_0) has the same value at each position x_0 , and therefore does not depend on x_0 .

11.3 Determine f'(x):

- a)
- f(x) = 3
- f(x) = 0b)
- f(x) = -1c)

- $f(x) = x^3$ d)
- $f(x) = x^4$ e)
- $f(x) = x^5$ f)

- $f(\mathbf{x}) = \mathbf{x}^{17}$ g)
- h) $f(x) = x^{200}$
- $f(x) = x^{100'001}$ i)

- $f(x) = x^{-1}$ i)
- $f(x) = x^{-2}$ k)
- $f(x) = x^{-17}$ 1)

- $f(x) = \frac{1}{x}$
- $f(x) = \frac{1}{x^3}$
- $f(x) = \frac{1}{x^{99}}$

- $f(x) = 3^x$ p)
- $f(x) = 5^x$ q)
- $f(x) = \left(\frac{2}{3}\right)^x$ r)

11.4 Determine the derivative (rate of change) $f'(x_0)$ of the function f at the indicated position x_0 :

- f(x) = x
 - i) $x_0 = 0$
- ii) $x_0 = 1$
- iii) $x_0 = -2$

- $f(x) = x^5$ b)
 - $x_0 = 0$
- ii)
- iii)

- $f(x) = x^{-4}$ c)
 - $x_0 = -1$
- ii)
- iii)

- $f(x) = \left(\frac{2}{3}\right)^x$ d)
 - i)
- ii) $x_0 = 1$
- iii) $x_0 = -2$

11.5 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a) The derivative (rate of change) of a function f at the position x_0 is a ...

> ... real number. ... function. ... tangent.

> > ... graph.

b) (see next page)

b)	The derivative (derived function) f' of a function f is a		
		real number.	
		function.	
		tangent.	
		graph.	
c)	f'(x ₀) is	$f'(x_0)$ is the slope of the	
		secant through the points $(0 0)$ and $(x_0 f(x_0))$.	
		secant through the points $(x_0+\Delta x f(x_0+\Delta x))$ and $(x_0 f(x_0))$.	
		tangent to the graph of f through $(x_0 f(x_0))$.	
		tangent to the graph of f' through $(x_0 f(x_0))$.	