Übung 11 Wechselstrom Drehstromnetze

Lernziele

- einen neuen Sachverhalt bearbeiten und analysieren können.
- wissen, dass in der Praxis Drehstromschaltungen in Form von Stern- und Dreieckschaltungen auftreten.
- die Zusammenhänge zwischen den Polleiter-Nullleiter- und den Polleiter-Polleiter-Spannungen in einer dreiphasigen Drehstromschaltung verstehen.
- Spannungen und Ströme in einer dreiphasigen Drehstromschaltung mit einem Zeigerdiagramm darstellen können

Aufgaben

1. In einem dreiphasigen Drehstromgenerator werden die drei Polleiterspannungen u_R, u_S und u_T erzeugt:

$$u_R = \hat{u} \sin(t)$$
 $u_S = \hat{u} \sin(t - \frac{2}{3})$ $u_T = \hat{u} \sin(t - \frac{4}{3})$

- a) Geben Sie die drei Polleiterspannungen in der komplexen Form an.
- b) Stellen Sie die drei Polleiterspannungen für den Zeitpunkt t = 0 in einem Zeigerdiagramm dar.
- c) Bestimmen Sie den Zeitpunkt t, zu welchem der Zeiger, welcher die Spannung u_S darstellt, erstmals senkrecht nach oben zeigt.
- 2. Überprüfen Sie auf zwei Arten, dass die Summe der drei Polleiterspannungen u_R, u_S und u_T stets 0 V beträgt.
 - a) durch vektorielle Addition im Zeigerdiagramm
 - b) durch rechnerische Addition
 - i) der reellen Ausdrücke u_R, u_S und u_T.
 - ii) der komplexen Ausdrücke \underline{u}_R , \underline{u}_S und \underline{u}_T .
- 3. Betrachten Sie die **Sternschaltung** (Skript Seite 31).

Überprüfen Sie auf zwei Arten, dass die Amplitude der Polleiter-Polleiter-Spannungen u_R-u_S , u_R-u_T und u_T-u_S um den Faktor $\sqrt{3}$ grösser ist als die Amplitude \hat{u} der einzelnen Polleiterspannungen.

- a) durch vektorielle Ausführung der Subtraktionen u_R-u_S, u_R-u_T und u_T-u_S im Zeigerdiagramm
- b) durch rechnerische Subtraktion
 - i) der reellen Ausdrücke u_T und u_S.
 - ii) der komplexen Ausdrücke u_T und u_S.
- 4. Betrachten Sie die **Dreieckschaltung** (Skript Seite 32).

Überprüfen Sie, dass die Amplitude des Stromes im Polleiter um den Faktor $\sqrt{3}$ grösser ist als die Amplitude des Stromes in der Phase.

Lösungen

- - b) ... $t = \frac{7}{6}$
- 3. a) ... b) i) ... ii) ...
- 4. ...