Derivative

Function f

```
f: D}->\mathbb{R}\quad\mathrm{ where D}\subseteq\mathbb{R
    x}->\textrm{y}=\textrm{f}(\textrm{x}
```

Ex.: $f(x)=24 \sqrt{x+1}-2 x-60$

What do we want to know?
Slope of the tangent to the graph of the function f at a certain point $A\left(x_{0} \mid f\left(x_{0}\right)\right)$.

Why do we want to know the slope?

- increasing (slope >0), decreasing (slope <0)
- relative maximum $/ \mathbf{m i n i m u m}$ (slope $=0$)
- concavity (concave up if slope increases, concave down if slope decreases), points of inflection

Applications in economics

- tendency of costs/revenue/profit
- maximum/minimum of costs/revenue/profit
- marginal costs/revenue/profit (change of costs/revenue/profit if number x of items increases by one)

Definition

The slope of the tangent to the graph of f at the point $A\left(x_{0} \mid f\left(x_{0}\right)\right)$ is called the derivative or the rate of change of f at $\mathbf{x}_{\mathbf{0}}$, denoted $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$.

How can we determine the slope?
The slope of the secant through the points $A\left(x_{0} \mid f\left(x_{0}\right)\right)$ and $B\left(x_{0}+\Delta x \mid f\left(x_{0}+\Delta x\right)\right)$ tends towards the slope of the tangent at $A\left(x_{0} \mid f\left(x_{0}\right)\right)$ as Δx tends towards 0 .

Ex.: $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$

$$
x \rightarrow y=f(x)=x^{2}
$$

$\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=2 \mathrm{x}_{0}$

Definition

Suppose that the rate of change $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$ exists for all $\mathrm{x}_{0} \in \mathrm{D}_{1}$, where $\mathrm{D}_{1} \subseteq \mathrm{D}$.
The function $\mathrm{f}^{\text {' }}$
$\mathrm{f}^{\prime}: \mathrm{D}_{1} \rightarrow \mathbb{R}$

$$
\mathrm{x} \rightarrow \mathrm{y}=\mathrm{f}^{\prime}(\mathrm{x})
$$

is called the derivative of the function f.
Ex. 1: $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$
$x \rightarrow y=f(x)=x^{2}$
$\mathrm{f}^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$
$x \rightarrow y=f^{\prime}(x)=2 x$

Ex. 2: f: $D \rightarrow \mathbb{R}$
$x \rightarrow y=f(x)=24 \sqrt{x+1}-2 x-60$
$\mathrm{f}^{\prime}: \mathrm{D}_{1} \rightarrow \mathbb{R}$
$x \rightarrow y=f^{\prime}(x)=\frac{12}{\sqrt{x+1}}-2$

