Exponential function

Definition

$f:$	$D \rightarrow \mathbb{R}$	$(\mathrm{D} \subseteq \mathbb{R})$
	$x \rightarrow y=f(x)=c \cdot a^{x}$	$\left(a \in \mathbb{R}^{+} \backslash\{1\}, c \in \mathbb{R} \backslash\{0\}\right)$
	$a>1:$ exponential growth	
	$a<1:$ exponential decay	

Graph

$$
\text { 1. } y=f(x)=2^{x} \quad(c=1, a=2)
$$

2. Parameter a

$$
\begin{array}{ll}
y=f_{1}(x)=2^{x} & (c=1, a=2) \\
y=f_{2}(x)=4^{x} & (c=1, a=4) \\
y=f_{3}(x)=\left(\frac{1}{2}\right)^{x} & \left(c=1, a=\frac{1}{2}\right)
\end{array}
$$

3. Parameter C

$$
\begin{array}{ll}
y=f_{1}(x)=2^{x} & (a=2, c=1) \\
y=f_{2}(x)=3 \cdot 2^{x} & (a=2, c=3) \\
y=f_{3}(x)=\frac{1}{2} \cdot 2^{x} & \left(a=2, c=\frac{1}{2}\right)
\end{array}
$$

$$
\text { 4. } \begin{array}{lll}
y=f_{1}(x)=10 \cdot 2^{x} & (c=10, a=2) \\
y=f_{2}(x)=20 \cdot 0.25^{x} & (c=20, a=0.25) \\
y=f_{3}(x)=40 \cdot 0.75^{x} & (c=40, a=0.75) \\
y=f_{4}(x)=30 \cdot 1.5^{x} & (c=30, a=1.5)
\end{array}
$$

Examples

1. Compound interest (exponential growth)

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{n}}=\mathrm{C}_{0} \cdot \mathrm{q}^{\mathrm{n}} & \mathrm{C}_{0}=\text { initial capital } \\
& \mathrm{C}_{\mathrm{n}}=\text { capital after } \mathrm{n} \text { compounding periods } \\
& \mathrm{n}=\text { number of compounding periods (typically: } 1 \text { compounding period }=1 \text { year) } \\
& q=\text { growth factor }=1+\mathrm{r} \quad(\mathrm{q}>1) \\
& \mathrm{r}=\text { interest rate per compounding period } \\
& \text { Ex.: } \quad \mathrm{C}_{0}:=1000, \mathrm{r}:=2 \%=0.02 \Rightarrow \mathrm{q}=1.02 \Rightarrow \mathrm{C}_{\mathrm{n}}=1000 \cdot 1.02^{\mathrm{n}}
\end{array}
$$

2. Consumer price index (exponential decay)
$\mathrm{P}(\mathrm{t})=\mathrm{P}_{0} \cdot \mathrm{q}^{\mathrm{t}} \quad \mathrm{P}_{0}=$ initial purchasing power
$\mathrm{P}(\mathrm{t})=$ purchasing power at time t (typically: t in years)
$\mathrm{q}=$ decay factor $\quad(\mathrm{q}<1)$
Ex.: $\quad P_{0}:=100, q:=0.97 \Rightarrow P(t)=100 \cdot 0.97^{t}$
