Indefinite integral

Ex.: Financial mathematics

Given the marginal cost function C' for producing a commodity or rendering a service:

C'(x) = (3x + 50) CHF

What is the cost function C?

C(x) = ... ?

General problem

Ex.:

1.

Given a function f. What function F is such that F' = f?

f(x) = 2x $\Rightarrow F_{1}(x) = x^{2} \qquad as F_{1}'(x) = 2x = f(x)$ $F_{2}(x) = x^{2} + 1 \qquad as F_{2}'(x) = 2x + 0 = 2x = f(x)$ $F_{3}(x) = x^{2} - 4 \qquad as F_{3}'(x) = 2x + 0 = 2x = f(x)$... $F(x) = x^{2} + C \ (C \in \mathbb{R}) \qquad as F'(x) = 2x + 0 = 2x = f(x)$

These are already all functions F with F' = f. There are no additional functions F with equations different from $F(x) = x^2 + C$ ($C \in \mathbb{R}$).

2.
$$f(x) = 8x^3$$

 $\Rightarrow F_1(x) = 2x^4$ as $F_1'(x) = 8x^3 = f(x)$
 $F_2(x) = 2x^4 + 5$ as $F_2'(x) = 8x^3 + 0 = 8x^3 = f(x)$
 $F_3(x) = 2x^4 - 11$ as $F_3'(x) = 8x^3 + 0 = 8x^3 = f(x)$
...
 $F(x) = 2x^4 + C \ (C \in \mathbb{R})$ as $F'(x) = 8x^3 + 0 = 8x^3 = f(x)$

Definitions

F is called an antiderivative of f if its derivative F' is equal to f, i.e. $F'(x) = f(x)$.	
The set of all antiderivatives of the function f is called the indefinite integral of f, denoted $\int f(x) dx$.	

Ex.: 1. $f(x) = 8x^3$

All antiderivatives F have the form $F(x) = 2x^4 + C$ ($C \in \mathbb{R}$). Therefore, we write $\int f(x) dx = \int 8x^3 dx = 2x^4 + C$

- 2. $f(x) = 12x^2$ $\int f(x) dx = \int 12x^2 dx = 4x^3 + C$
- 3. $\int 2x \, dx = x^2 + C$
- 4. $\int 3 e^{3x} dx = e^{3x} + C$

$C(C \in \mathbb{R})$ is called the integration constant.