Exercises 15 Definite integral
 Definite integral, area under a curve, consumer's/producer's surplus

Objectives

- be able to apply the fundamental theorem of calculus.
- be able to determine a definite integral of a constant, basic power, and basic exponential function.
- be able to determine the area between the graph of a basic power function and the abscissa.
- be able to determine a consumer's and a producer's surplus if the demand and supply functions are basic power functions.

Problems

15.1 Calculate the definite integrals below:
a) $\quad \int_{3}^{4}(2 x-5) d x$
b) $\quad \int_{0}^{1}\left(x^{3}+2 x\right) d x$
c) $\quad \int_{-5}^{-3}\left(\frac{1}{2} x^{2}-4\right) d x$
d) $\quad \int_{2}^{4}\left(x^{3}-\frac{1}{2} x^{2}+3 x-4\right) d x$
e) $\quad \int_{-2}^{2}\left(-\frac{1}{8} x^{4}+2 x^{2}\right) d x$
f) $\quad \int_{-1}^{1} e^{x} d x$
g) $\quad \int_{0}^{1} e^{2 x} d x$
h) $\quad \int_{-1}^{1} e^{-3 x} d x$
15.2 Determine the area between the graph of the function f and the x-axis on the interval where the graph of f is above the x-axis, i.e. where $f(x) \geq 0$.
a) $f(x)=-x^{2}+1$
b) $\quad f(x)=x^{3}-x^{2}-2 x$

Hints:

- First, determine the positions x where the graph of f touches or intersects the x-axis, i.e where $f(x)=0$
- Then, determine the interval on which the graph of f is above the x-axis, i.e. where $f(x) \geq 0$
15.3 The demand function for a product is $p=f_{d}(x)=\left(100-4 x^{2}\right)$ CHF.

If the equilibrium quantity is 4 units, what is the consumer's surplus?
15.4 The demand function for a product is $p=f_{d}(x)=\left(34-x^{2}\right)$ CHF. If the equilibrium price is 9 CHF , what is the consumer's surplus?
15.5 Suppose that the supply function for a good or a service is $p=f_{s}(x)=\left(4 x^{2}+2 x+2\right)$ CHF. If the equilibrium price is 422 CHF , what is the producer's surplus?
15.6 The the supply function f_{s} and the demand function f_{d} for a certain product or service are given as follows:

$$
\begin{aligned}
& p=f_{s}(x)=\left(x^{2}+4 x+11\right) C H F \\
& p=f_{d}(x)=\left(81-x^{2}\right) C H F
\end{aligned}
$$

Determine ...
a) \quad. the equilibrium point, i.e. the equilibrium quantitiy and the equilibrium price.
b) $\quad .$. the consumer's surplus at market equilibrium.
c) \ldots the producer's surplus at market equilibrium.
15.7 (see next page)
15.7 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) The definite integral of a function is a ...

... real number.
... function.
... set of functions.
... graph.
b) $\quad \int_{a}^{b} f(x) d x \ldots$

■ $\quad . .=\mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})$
$\ldots=F(a)-F(b)$ where F is an antiderivative of f.
... is equal to the area between the graph of f and the x -axis on the interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ if $f(x) \geq 0$ on the interval $a \leq x \leq b$.
Γ ... cannot be calculated unless all antiderivatives of f are known.
c) The consumer's surplus is an area between ...
... the graphs of the demand and the supply functions.
... the x axis and the graph of the demand function.
... the graph of the demand function and the horizontal line "price = equilibrium price".
... the horizontal line "price = equilibrium price" and the graph of the supply function.

Answers

15.1
a) $\quad \int_{3}^{4}(2 x-5) d x=\left[2 \cdot \frac{1}{2} x^{2}-5 x\right]_{3}^{4}=\left[x^{2}-5 x\right]_{3}^{4}=\left(4^{2}-5 \cdot 4\right)-\left(3^{2}-5 \cdot 3\right)=2$
b) $\quad \int_{0}^{1}\left(x^{3}+2 x\right) d x=\left[\frac{1}{4} x^{4}+2 \cdot \frac{1}{2} x^{2}\right]_{0}^{1}=\left[\frac{1}{4} x^{4}+x^{2}\right]_{0}^{1}=\left(\frac{1}{4} 1^{4}+1^{2}\right)-\left(\frac{1}{4} 0^{4}+0^{2}\right)=\frac{5}{4}$
c) $\quad \int_{-5}^{-3}\left(\frac{1}{2} \mathrm{x}^{2}-4\right) \mathrm{dx}=\left[\frac{1}{2} \cdot \frac{1}{3} \mathrm{x}^{3}-4 \mathrm{x}\right]_{-5}^{-3}=\left[\frac{1}{6} \mathrm{x}^{3}-4 \mathrm{x}\right]_{-5}^{-3}=\left(\frac{1}{6}(-3)^{3}-4 \cdot(-3)\right)-\left(\frac{1}{6}(-5)^{3}-4 \cdot(-5)\right)=\frac{25}{3}$
d) $\quad \int_{2}^{4}\left(x^{3}-\frac{1}{2} x^{2}+3 x-4\right) d x=\left[\frac{1}{4} x^{4}-\frac{1}{2} \cdot \frac{1}{3} x^{3}+3 \cdot \frac{1}{2} x^{2}-4 x\right]_{2}^{4}=\left[\frac{1}{4} x^{4}-\frac{1}{6} x^{3}+\frac{3}{2} x^{2}-4 x\right]_{2}^{4}$ $=\left(\frac{1}{4} 4^{4}-\frac{1}{6} 4^{3}+\frac{3}{2} 4^{2}-4 \cdot 4\right)-\left(\frac{1}{4} 2^{4}-\frac{1}{6} 2^{3}+\frac{3}{2} 2^{2}-4 \cdot 2\right)=\frac{182}{3}$
e) $\quad \int_{-2}^{2}\left(-\frac{1}{8} x^{4}+2 x^{2}\right) d x=\left[-\frac{1}{8} \cdot \frac{1}{5} x^{5}+2 \cdot \frac{1}{3} x^{3}\right]_{-2}^{2}=\left[-\frac{1}{40} x^{5}+\frac{2}{3} x^{3}\right]_{-2}^{2}$ $=\left(-\frac{1}{40} 2^{5}+\frac{2}{3} 2^{3}\right)-\left(-\frac{1}{40}(-2)^{5}+\frac{2}{3}(-2)^{3}\right)=\frac{136}{15}$
f) $\quad \int_{-1}^{1} \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\left[\mathrm{e}^{\mathrm{x}}\right]_{-1}^{1}=\mathrm{e}^{1}-\mathrm{e}^{-1}=\mathrm{e}-\frac{1}{\mathrm{e}}$
g) $\quad \int_{0}^{1} \mathrm{e}^{2 \mathrm{x}} \mathrm{dx}=\left[\frac{1}{2} \mathrm{e}^{2 \mathrm{x}}\right]_{0}^{1}=\frac{1}{2}\left[\mathrm{e}^{2 \mathrm{x}}\right]_{0}^{1}=\frac{1}{2}\left(\mathrm{e}^{2 \cdot 1}-\mathrm{e}^{2 \cdot 0}\right)=\frac{1}{2}\left(\mathrm{e}^{2}-1\right)$
h) $\quad \int_{-1}^{1} e^{-3 x} d x=\left[-\frac{1}{3} e^{-3 x}\right]_{-1}^{1}=-\frac{1}{3}\left[e^{-3 x}\right]_{-1}^{1}=-\frac{1}{3}\left(e^{-3 \cdot 1}-e^{-3 \cdot(-1)}\right)=-\frac{1}{3}\left(e^{-3}-e^{3}\right)=\frac{1}{3}\left(e^{3}-\frac{1}{e^{3}}\right)$
15.2
a) $\quad A=\int_{-1}^{1}\left(-x^{2}+1\right) d x=\left[-\frac{1}{3} x^{3}+x\right]_{-1}^{1}=\frac{4}{3}$

b) $\quad A=\int_{-1}^{0}\left(x^{3}-x^{2}-2 x\right) d x=\left[\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-2 \cdot \frac{1}{2} x^{2}\right]_{-1}^{0}=\left[\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-x^{2}\right]_{-1}^{0}=\frac{5}{12}$

15.3 Consumer's surplus
$\mathrm{CS}=170.67 \mathrm{CHF}$ (rounded)
15.4 Consumer's surplus
$\mathrm{CS}=83.33 \mathrm{CHF}$ (rounded)
15.5 Producer's surplus PS = 2766.67 CHF (rounded)
15.6 a) Equilibrium quantity $\mathrm{x}=5$

Equilibrium price $\mathrm{p}=56 \mathrm{CHF}$
b) Consumer's surplus $\mathrm{CS}=83.33 \mathrm{CHF}$ (rounded)
c) Producer's surplus $\mathrm{PS}=133.33 \mathrm{CHF}$ (rounded)
$15.7 \quad$ a) $\quad 1^{\text {st }}$ statement
b) $\quad 3^{\text {rd }}$ statement
c) $\quad 3^{\text {rd }}$ statement

