Exercises 14 Indefinite integral
 Antiderivative, indefinite integral, coefficient/sum rule

Objectives

- be able to determine an antiderivative and the indefinite integral of a constant, basic power, and basic exponential function.
- be able to apply the coefficient and sum rules to determine the indefinite integral of a function.
- be able to determine the cost, revenue, and profit functions if the marginal cost, marginal revenue, and marginal profit functions are known.

Problems

14.1 Determine the indefinite integrals below:
a) $\quad \int x^{2} d x$
b) $\quad \int x^{3} d x$
c) $\quad \int x^{-5} d x$
d) $\quad \int \frac{1}{x^{2}} d x$
e) $\quad \int \frac{1}{x^{4}} d x$
f) $\quad \int 4 d x$
g) $\quad \int(-7) d x$
h) $\quad \int e^{x} d x$
i) $\quad \int e^{3 x} d x$
j) $\quad \int e^{-x} d x$
14.2 Determine the indefinite integral of the following functions f :
a) $\quad f(x)=x^{5}$
b) $\quad f(x)=3 x^{2}$
c) $\quad f(x)=x^{3}+2 x^{2}-5$
d) $\quad f(x)=\frac{x^{5}}{2}-\frac{2}{3 x^{2}}$
e) $\quad f(x)=\frac{1}{2} x^{3}-2 x^{2}+4 x-5$
f) $\quad f(x)=x^{10}-\frac{1}{2} x^{3}-x$
14.3 Determine the equations of those two antiderivatives F_{1} and F_{2} of f which fulfil the stated conditions.
a) $\quad f(x)=10 x^{2}+x$
$\mathrm{F}_{1}(0)=3$
$F_{2}(0)=-1$
b) $\quad f(x)=x^{3}+3 x+1$
$\mathrm{F}_{1}(2)=5$
$\mathrm{F}_{2}(4)=-8$
14.4 Suppose that we know the equation of the derivative f ' of a function f :

$$
f^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-50 \mathrm{x}+250
$$

Determine the equation of the function f, if ..
a) $\quad \ldots \mathrm{f}(0)=500$.
b) $\quad \ldots \mathrm{f}(10)=2500$.
14.5 Suppose that we know the equation of the second derivative f " of a function f :

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})=2 \mathrm{x}-1
$$

Determine the equation of the function f such that $f^{\prime}(2)=4$ and $f(1)=-1$.
14.6 If the monthly marginal cost for a product or a service is $\mathrm{C}^{\prime}(x)=(2 x+100)$ CHF, with fixed costs amounting to 200 CHF , determine the total cost function for a month.
14.7 If the marginal cost for a product or a service is $\mathrm{C}^{\prime}(\mathrm{x})=(4 \mathrm{x}+2) \mathrm{CHF}$, and the production or rendering of 10 units results in a total cost of 300 CHF , determine the total cost function.
14.8 If the marginal cost for a product or a service is $C^{\prime}(x)=(4 x+40) C H F$, and the total cost of producing or rendering 25 units is 3000 CHF , what will be the total cost for 30 units?
14.9 A firm knows that its marginal cost for a service is $C^{\prime}(x)=(3 x+20)$ CHF, that its marginal revenue is $R^{\prime}(x)=(-5 x+44)$ CHF, and that the cost of rendering of 10 units is 370 CHF.

Determine the ...
a) \quad.. profit function $\mathrm{P}(\mathrm{x})$.
b) \ldots number of units that results in a maximum profit.

Hint:

- The revenue R is zero if no unit is sold. Thus, $\mathrm{R}(0)=0 \mathrm{CHF}$.
14.10 Suppose that the marginal revenue $\mathrm{R}^{\prime}(\mathrm{x})$ and the derivative of the average $\operatorname{cost} \overline{\mathrm{C}}^{\prime}(\mathrm{x})$ of a company are given as follows:

$$
\begin{aligned}
& \mathrm{R}^{\prime}(\mathrm{x})=400 \mathrm{CHF} \\
& \overline{\mathrm{C}}^{\prime}(\mathrm{x})=\left(\frac{2}{15} \mathrm{x}-11-\frac{10^{\prime} 000}{\mathrm{x}^{2}}\right) \mathrm{CHF}
\end{aligned}
$$

Producing or rendering 15 units results in a total cost of 16'750 CHF.
Determine the
a) \quad.. profit function $\mathrm{P}(\mathrm{x})$.
b) ... number of units that results in a maximum profit.
c) $\quad .$. maximum profit.
14.11 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) An antiderivative of a function is a ...
Γ
Γ
Γ
... real number.
... function.
... set of functions.
... graph.
b) The indefinite integral of a function is a ...

\square	\ldots real number.
\square	\ldots function.
\square	\ldots set of functions.
\square	\ldots graph.

c) If $f=g^{\prime}$ then ...
$\stackrel{\Gamma}{\Gamma}$
... f is an antiderivative of g .
$\ldots g$ is an antiderivative of f.
... f is the indefinite integral of g.
... g is the indefinite integral of f .

