Exercises 13 Applications of differential calculus Local/global maxima/minima, points of inflection

Objectives

- be able to determine the local maxima and minima of a function.
- be able to determine the points of inflection of a function.
- be able to determine the global maximum and the global minimum of a cost, revenue, and profit function.
- be able to determine the global minimum of an average cost, average revenue, and average profit function.

Problems

13.1 For each function, determine ...
i) $\quad \ldots$ all local maxima and minima.
ii) $\quad .$. all points of inflection.
a) $\quad f(x)=x^{2}-4$
b) $f(x)=-8 x^{3}+12 x^{2}+18 x$
c) $\quad s(t)=t^{4}-8 t^{2}+16$
d) $\quad f(x)=x e^{-x}$
e) * $\quad f(x)=\left(1-e^{-2 x}\right)^{2}$
f) * $\quad \mathrm{V}(\mathrm{r})=-\mathrm{D}\left(\frac{2 \mathrm{a}}{\mathrm{r}}-\frac{\mathrm{a}^{2}}{\mathrm{r}^{2}}\right) \quad(\mathrm{D}>0, \mathrm{a}>0)$
13.2 If the total profit for a commodity is

$$
P(x)=\left(2000 x+20 x^{2}-x^{3}\right) C H F
$$

where x is the number of items sold, determine the level of sales, x , that maximises profit, and find the maximum profit.
Hints:

- First, find the local maxima.
- Then, check if one of the local maxima is the global maximum.
13.3 If the total cost for a service concerning a tourism event is given by

$$
C(x)=\left(\frac{1}{4} x^{2}+4 x+100\right) \cdot 100 \mathrm{CHF}
$$

where x represents the extent of the service, what value of x will result in a minimum average cost? Determine the minimum average cost.
13.4 Suppose that the production capacity for a certain commodity cannot exceed 30. If the total profit for this company is

$$
P(x)=\left(4 x^{3}-210 x^{2}+3600 x\right) C H F
$$

where x is the number of units sold, determine the number of items that will maximise profit.
13.5 (see next page)
13.5 Suppose the annual profit for a store is given by

$$
\mathrm{P}(\mathrm{x})=\left(-0.1 \mathrm{x}^{3}+3 \mathrm{x}^{2}\right) \cdot 1000 \mathrm{CHF}
$$

where x is the number of years past 2010. If this model is accurate, determine the point of inflection for the profit.
13.6 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) If f has a local maximum at $\mathrm{x}=\mathrm{x}_{0}$ it can be concluded that

$\ldots \mathrm{f}\left(\mathrm{x}_{0}\right)>\mathrm{f}(\mathrm{x})$ for any $\mathrm{x} \neq \mathrm{x}_{0}$
... $f\left(x_{0}\right)>f(x)$ for any $x>x_{0}$
... $f\left(x_{0}\right)>f(x)$ for any $x<x_{0}$
... $f\left(x_{0}\right)>f(x)$ for all x which are in a certain neighbourhood of x_{0}
b) If $\mathrm{f}\left(\mathrm{x}_{0}\right)<0, \mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0$, and $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right) \neq 0$, it can be concluded that f has \ldots

$$
\begin{aligned}
& \text { ■ } \quad \text {.. no local minimum at } \mathrm{x}=\mathrm{x}_{0} \\
& \square \quad \text {... no local maximum at } \mathrm{x}=\mathrm{x}_{0} \\
& \Gamma \quad \text {... no point of inflection at } \mathrm{x}=\mathrm{x}_{0} \\
& \Gamma \quad \text {... a point of inflection at } \mathrm{x}=\mathrm{x}_{0}
\end{aligned}
$$

c) The global maximum of a function ...

> ■ \quad... is always a local maximum. $\square \quad$... can be a local minimum. $\square \quad$... can be a local maximum. $\square \quad$... always exists.

