Exercises 13 Applications of differential calculus Local/global maxima/minima, points of inflection

Objectives

- be able to determine the local maxima and minima of a function.
- be able to determine the points of inflection of a function.
- be able to determine the global maximum and the global minimum of a cost, revenue, and profit function.
- be able to determine the global minimum of an average cost, average revenue, and average profit function.

Problems

- 13.1 For each function, determine ...
 - i) ... all local maxima and minima.
 - ii) ... all points of inflection.
 - a) $f(x) = x^2 4$
 - b) $f(x) = -8x^3 + 12x^2 + 18x$
 - c) $s(t) = t^4 8t^2 + 16$
 - $f(x) = x e^{-x}$
 - e) * $f(x) = (1 e^{-2x})^2$
 - f) * $V(r) = -D\left(\frac{2a}{r} \frac{a^2}{r^2}\right)$ (D > 0, a > 0)
- 13.2 If the total profit for a commodity is

$$P(x) = (2000x + 20x^2 - x^3) CHF$$

where x is the number of items sold, determine the level of sales, x, that maximises profit, and find the maximum profit.

Hints:

- First, find the local maxima.
- Then, check if one of the local maxima is the global maximum.
- 13.3 If the total cost for a service concerning a tourism event is given by

$$C(x) = (\frac{1}{4}x^2 + 4x + 100) \cdot 100 \text{ CHF}$$

where x represents the extent of the service, what value of x will result in a minimum average cost? Determine the minimum average cost.

13.4 Suppose that the production capacity for a certain commodity cannot exceed 30. If the total profit for this company is

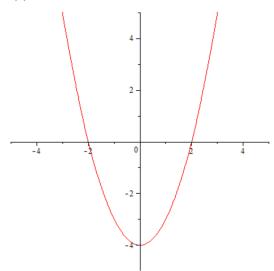
$$P(x) = (4x^3 - 210x^2 + 3600x)$$
 CHF

where x is the number of units sold, determine the number of items that will maximise profit.

13.5 (see next page)

13.5 Suppose the annual profit for a store is given by

$$P(x) = (-0.1x^3 + 3x^2) \cdot 1000 \text{ CHF}$$


where x is the number of years past 2010. If this model is accurate, determine the point of inflection for the profit.

13.6 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.

a)	If f has a local maximum at $x = x_0$ it can be concluded that
	$f(x_0) > f(x)$ for any $x \neq x_0$ $f(x_0) > f(x)$ for any $x > x_0$ $f(x_0) > f(x)$ for any $x < x_0$
	$f(x_0) > f(x)$ for all x which are in a certain neighbourhood of x_0
b)	If $f(x_0) < 0$, $f'(x_0) = 0$, and $f''(x_0) \neq 0$, it can be concluded that f has
	no local minimum at $x = x_0$ no local maximum at $x = x_0$ no point of inflection at $x = x_0$ a point of inflection at $x = x_0$
c)	The global maximum of a function
	is always a local maximum can be a local minimum can be a local maximum always exists.

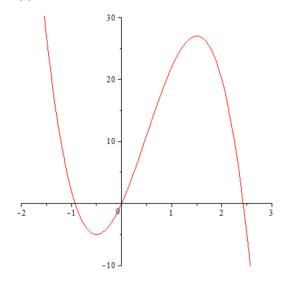
Answers

 $f(x) = x^2 - 4$ 13.1 a)

$$f'(x) = 2x$$

$$f''(x) = 2$$

$$f'''(x) = 0$$


i)
$$f'(x) = 0$$
 at $x_1 = 0$
 $f''(x_1) = 2 > 0$

local minimum at $x_1 = 0$ no local maximum

ii)
$$f''(x) = 2 \neq 0$$
 for all x

no point of inflection

b)
$$f(x) = -8x^3 + 12x^2 + 18x$$

$$f'(x) = -24x^2 + 24x + 18$$

$$f''(x) = -48x + 24$$

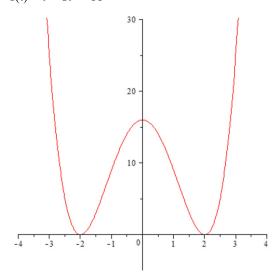
$$f'''(x) = -48$$

i)
$$f'(x) = 0$$
 at $x_1 = -\frac{1}{2}$ and $x_2 = \frac{3}{2}$
 $f''(x_1) = 48 > 0$

$$f''(x_1) = 48 > 0$$

local minimum at
$$x_1 = -\frac{1}{2}$$

$$f''(x_2) = -48 < 0$$


local minimum at
$$x_1 = -\frac{1}{2}$$

local maximum at $x_2 = \frac{3}{2}$

ii)

$$f''(x) = 0 \text{ at } x_3 = \frac{1}{2}$$

 $f'''(x_3) = -48 \neq 0$

point of inflection at $x_3 = \frac{1}{2}$

c)
$$s(t) = t^4 - 8t^2 + 16$$

$$s'(t) = 4t^3 - 16t$$

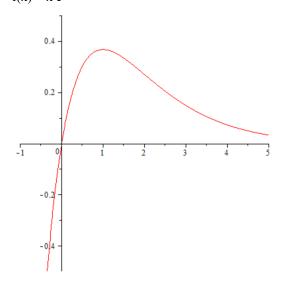
$$s''(t) = 12t^2 - 16$$

$$s'''(t) = 24t$$

i)
$$s'(t) = 0$$
 at $t_1 = 0$, $t_2 = -2$, and $t_3 = 2$

$$s''(t_1) = -16 < 0$$

$$s''(t_2) = 32 > 0$$
 \Rightarrow local minimum at $t_2 = -2$ $s''(t_3) = 32 > 0$ \Rightarrow local minimum at $t_3 = 2$


ii)
$$s''(t) = 0 \text{ at } t_4 = -\frac{2}{\sqrt{3}} \text{ and } t_5 = \frac{2}{\sqrt{3}}$$
$$s'''(t_4) = -\frac{48}{\sqrt{3}} \neq 0 \qquad \Rightarrow$$
$$s'''(t_5) = \frac{48}{\sqrt{3}} \neq 0 \qquad \Rightarrow$$

$$s'''(t_5) = \frac{48}{\sqrt{3}} \neq 0 \qquad \Rightarrow \qquad$$

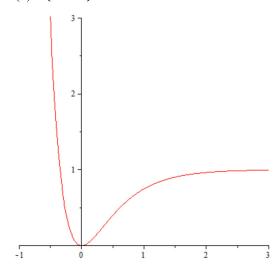
point of inflection at $t_4 = -\frac{2}{\sqrt{3}}$ point of inflection at $t_5 = \frac{2}{\sqrt{3}}$

local maximum at $t_1 = 0$

d) $f(x) = x e^{-x}$

$$f'(x) = e^{-x} - x e^{-x} = (1 - x) e^{-x}$$

$$f''(x) = -e^{-x} - (1 - x) e^{-x} = (x - 2) e^{-x}$$


$$f'''(x) = e^{-x} - (x - 2) e^{-x} = (3 - x) e^{-x}$$

i)
$$f'(x) = 0 \text{ at } x_1 = 1$$

$$f''(x_1) = -\frac{1}{c} < 0 \qquad \Rightarrow \qquad \text{local maximum at } x_1 = 1$$
 no local minimum

ii)
$$f''(x) = 0 \text{ at } x_2 = 2$$

$$f'''(x_2) = \frac{1}{e^2} \neq 0 \qquad \Rightarrow \qquad \text{point of inflection at } x_2 = 2$$

e) *
$$f(x) = (1 - e^{-2x})^2 = 1 - 2 e^{-2x} + e^{-4x}$$

$$f'(x) = 4 e^{-2x} - 4 e^{-4x} = 4 e^{-2x} (1 - e^{-2x})$$

$$f''(x) = -8 e^{-2x} + 16 e^{-4x} = 8 e^{-2x} (2 e^{-2x} - 1)$$

$$f'''(x) = 16 e^{-2x} - 64 e^{-4x} = 16 e^{-2x} (1 - 4 e^{-2x})$$

i)
$$f'(x) = 0$$
 at $x_1 = 0$
 $f''(x_1) = 8 > 0$ \Rightarrow local minimum at $x_1 = 0$
no local maximum

ii)
$$f''(x) = 0$$
 at $x_2 = \frac{\ln(2)}{2} = 0.34...$
 $f'''(x_2) = -8 \neq 0$ \Rightarrow point of inflection at $x_2 = 0.34...$

$$\begin{split} f) * & V'(r) = -D\left(-\frac{2a}{r^2} + \frac{2a^2}{r^3}\right) = \frac{2aD}{r^2}\left(1 - \frac{a}{r}\right) \\ & V''(r) = -D\left(\frac{4a}{r^3} - \frac{6a^2}{r^4}\right) = \frac{2aD}{r^3}\left(\frac{3a}{r} - 2\right) \\ & V'''(r) = -D\left(-\frac{12a}{r^4} + \frac{24a^2}{r^5}\right) = \frac{12aD}{r^4}\left(1 - \frac{2a}{r}\right) \end{split}$$

i)
$$V'(r)=0 \text{ at } r_1=a \\ V''(r_1)=\frac{2D}{a^2}>0 \\ \Rightarrow \qquad \text{local minimum at } r_1=a \\ \text{no local maximum}$$

ii)
$$V"(r) = 0 \text{ at } r_2 = \frac{3a}{2}$$

$$V"'(r_2) = -\frac{64D}{81a^3} \neq 0 \qquad \Rightarrow \qquad \text{point of inflection at } r_2 = \frac{3a}{2}$$

13.2 (Sole) **local** maximum at
$$x_1 = \frac{100}{3} \rightarrow 33 \text{ or } 34$$

$$P(33) = 51'843$$
 CHF

$$P(34) = 51'816 \text{ CHF}$$

 $P(x) \le P(x_1)$ if $x \ne x_1$ as there is no local minimum

 \Rightarrow P = 51'843 CHF is the **global** maximum profit at x = 33.

13.3
$$\overline{C}(x) = \frac{C(x)}{x} = \left(\frac{1}{4}x + 4 + \frac{100}{x}\right) \cdot 100 \text{ CHF}$$

 $\overline{C}(x)$ has a (sole) **local** minimum at $x_1 = 20$.

$$\overline{C}(20) = 1400 \text{ CHF}$$

 $\overline{C}(x) > \overline{C}(x_1)$ if $x \neq x_1$ as there is no local maximum.

- $\Rightarrow \overline{C} = 1400$ CHF is the **global** minimum average cost at x = 20.
- P(x) has a **local** maximum at $x_1 = 15$ and a **local** minimum at $x_2 = 20$. 13.4

$$P(x_1) = 20'250 \text{ CHF}$$

 $P(x) < P(x_1)$ if $x < x_1$ as there is no local minimum on the interval $x < x_1$.

P(30) = 27'000 CHF > 20'250 CHF (!)

- \Rightarrow P = 27'000 CHF is the **global** maximum profit at the endpoint x = 30.
- 13.5 P(x) has a point of inflection at $x_1 = 10$.

 $P(10) = 200 \cdot 1000 \text{ CHF} = 200'000 \text{ CHF}$

- \Rightarrow point of inflection (10 | 200'000 CHF), i.e. when x = 10 (in the year 2020) and P = 200'000 CHF
- 4th statement 13.6 a)
 - 3rd statement b)
 - 3rd statement c)