Exercises 12 Differentiation rules Coefficient, sum, product, exponential function, higher-order derivatives

Objectives

- be able to apply the coefficient, sum, and product rules to determine the derivative of a function.
- be able to determine a higher-order derivative of a function.

Problems

12.1 Determine the derivative by applying the coefficient rule:
a) $\quad f(x)=3 x^{5}$
b) $\quad f(x)=-4 x^{3}$
c) $\quad f(x)=-x^{10}$
d) $\quad f(x)=a \cdot x^{3}$
e) $\quad f(x)=n \cdot x^{n-1}$
f) $\quad f(x)=9 \cdot 3^{x}$
g) $\quad \mathrm{s}(\mathrm{t})=\frac{1}{2} \mathrm{~g} \cdot \mathrm{t}^{2}$
h) $\quad S(T)=\alpha \cdot T^{4}$
i) $\quad C(x)=(-3 x)^{3}$
12.2 Determine the derivative by applying the sum rule:
a) $\quad f(x)=x^{5}+x^{6}$
b) $\quad f(x)=x^{10}-x^{9}$
c) $\quad \mathrm{f}(\mathrm{x})=1+\mathrm{x}+3 \mathrm{x}^{3}$
d) $\quad f(x)=\frac{1}{4} x^{4}+3 x^{2}-2$
e) $\quad f(x)=3 x^{2}(x-2)$
f) $\quad f(x)=-3 x^{8}+x^{5}-3 x+99$
g) $\quad f(x)=a x^{2}+b x+c$
h) $\quad \mathrm{f}(\mathrm{x})=3\left(\mathrm{a}^{2}-2 \mathrm{ax}+\mathrm{x}^{2}\right)$
i) $\quad f(x)=\frac{x^{3}}{3}-\frac{3}{x^{3}}$
j) $\mathrm{s}(\mathrm{t})=\mathrm{s}_{0}+\mathrm{v}_{0} \mathrm{t}+\frac{1}{2} \mathrm{~g} \cdot \mathrm{t}^{2}$
k) $\quad \mathrm{V}(\mathrm{r})=-\frac{\mathrm{a}}{\mathrm{r}}+\frac{\mathrm{b}}{\mathrm{r}^{2}}$

1) $\quad \mathrm{C}(\mathrm{n})=\mathrm{C}_{0}(1+\mathrm{nr})$

Hint:

- In some problems, the coefficient rule is needed, too.
12.3 Determine the derivative by applying the product rule:
a) $\quad f(x)=x \cdot e^{x}$
b) $\quad f(x)=x^{3} \cdot 3^{x}$
c) $\quad f(x)=-2 x^{5}(x-1)$
d) $\quad f(x)=(2 x-1) \cdot e^{x}$
e) $\quad f(x)=(2 x-1)\left(-3 x^{2}-x+1\right)$
f) $\quad V(r)=e^{r}\left(a \cdot r^{2}-\frac{b}{r^{3}}\right)$

Hint:

- In some problems, the coefficient and/or the sum rule(s) is/are needed, too.
12.4 Determine the derivative of the exponential functions below:
a) $\quad f(x)=e^{4 x}$
b) $\quad f(x)=e^{-x}$
c) $\quad f(x)=e^{-x^{2}}$
d) $\quad f(x)=e^{x^{2}-2 x+5}$
12.5 Determine the derivative of the functions below. Apply the appropriate differentiation rule(s). Simplify and factorise the derivative as far as possible:
a) $\quad f(x)=(x-2) e^{2 x}$
b) $\quad f(x)=\left(2-x^{2}\right) e^{-x}$
c) $\quad f(x)=\left(3 x^{3}-2 x^{2}+x-1\right) e^{-2 x}$
d) $\quad P(v)=a v^{2} e^{-b v^{2}}$
12.6 (see next page)
12.6 Determine the derivatives (rates of change) below:
a) $\quad f^{\prime}(2) \quad$ with function f in 12.1 b)
b) $\quad \mathrm{s}^{\prime}(4) \quad$ with function s in 12.1 g$)$
c) $\quad f^{\prime}(-1) \quad$ with function f in 12.2 g$)$
d) $\quad P^{\prime}(1) \quad$ with function P in $\left.12.5 d\right)$
12.7 Determine the second and third derivatives of the functions below. Simplify and factorise the higher-order derivatives as far as possible:
a) Function f in 12.1 a)
b) Function f in 12.2 g)
c) Function f in 12.3 a)
d) Function f in 12.4 c)

Hint:

- You have already determinded the first derivatives of the corresponding functions.
12.8 Determine the indicated higher-order derivatives:
a) $\quad \mathrm{f}^{\prime \prime}(-1) \quad$ with function f in 12.1 a$)$
Hint:
- You have already determined $\mathrm{f}^{\prime \prime}(\mathrm{x})$ in 12.7 a$)$.
b) $\quad \mathrm{f}$ '"(2) with function f in 12.4 c)
Hint:
- You have already determined f " $\mathrm{t}(\mathrm{x})$ in 12.7 d$)$.
12.9 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) The third derivative of a function is a ...
$\square \quad .$. constant function if the second derivative is a quadratic function.
- ... quadratic function if the second derivative is a linear function.
- ... linear function if the first derivative is a quadratic function.
\square ... constant function if the first derivative is a quadratic function.
b) The derivative of a ...

c) If $f(x)=c \cdot g(x) \cdot h(x)$ then $f^{\prime}(x)=\ldots$

$$
\begin{array}{ll}
\Gamma & \ldots 0 \\
\Gamma & \ldots c \cdot g^{\prime}(x) \cdot h^{\prime}(x) \\
\Gamma & \ldots c \cdot g(x) \cdot h^{\prime}(x)+c \cdot g^{\prime}(x) \cdot h(x) \\
\Gamma & \ldots . c \cdot g^{\prime}(x) \cdot h^{\prime}(x)+c \cdot g(x) \cdot h(x)
\end{array}
$$

