Exercises 11
 Derivative
 Derivative (rate of change), derivative (derived function) of constant/power/exponential functions

Objectives

- be able to estimate a derivative (rate of change) out of the graph of a function.
- be able to state the derivative (rate of change) of a constant and a linear function.
- be able to determine the derivative (derived function) of a constant and a linear function.
- be able to determine the derivative (derived function) of a basic power and a basic exponential function.
- be able to determine a derivative (rate of change) of a basic power and a basic exponential function.

Problems

11.1 The graph of a function f ist given as follows:

Estimate the derivative (rate of change) $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$ at the given position x_{0} :
a) $\quad \mathrm{x}_{0}=-1$
b) $\quad \mathrm{x}_{0}=0$
c) $\quad \mathrm{x}_{0}=1$
d) $\quad x_{0}=-2$

Hints:

- Draw the tangent to the graph of f at the given position x_{0}.
- Choose any two points on the tangent, and estimate their coordinates.
- Determine the slope of the tangent out of the estimated coordinates of the two points.
11.2 For each of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto y=f(x)=\ldots$
i) ... draw the graph of f.
ii) ... state the derivative (rate of change) $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$ at the given position x_{0}.
a) $\quad f(x)=3$
$\mathrm{x}_{0}=2$
b) $\quad f(x)=c(c \in \mathbb{R})$
any $\mathrm{x}_{0} \in \mathbb{R}$
c) $\quad \mathrm{f}(\mathrm{x})=2 \mathrm{x}-3$
$\mathrm{x}_{0}=4$
d) $\quad \mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{q}(\mathrm{m} \in \mathbb{R} \backslash\{0\}, \mathrm{q} \in \mathbb{R}) \quad$ any $\mathrm{x}_{0} \in \mathbb{R}$

Hint:

- If the graph of a function f is a straight line, the derivative (rate of change) $f^{\prime}\left(x_{0}\right)$ is the slope of that straight line, i.e $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$ has the same value at each position x_{0}, and therefore does not depend on x_{0}.
11.3 Determine $\mathrm{f}^{\prime}(\mathrm{x})$:
a) $\quad f(x)=3$
b) $\quad f(x)=0$
c) $\quad f(x)=-1$
d) $\quad f(x)=x^{3}$
e) $\quad f(x)=x^{4}$
f) $\quad f(x)=x^{5}$
g) $\quad f(x)=x^{17}$
h) $\quad f(x)=x^{200}$
i) $\quad f(x)=x^{100001}$
j) $\quad f(x)=x^{-1}$
k) $\quad f(x)=x^{-2}$

1) $\quad f(x)=x^{-17}$
m) $\quad f(x)=\frac{1}{x}$
n) $\quad f(x)=\frac{1}{x^{3}}$
o) $\quad f(x)=\frac{1}{x^{99}}$
p) $\quad f(x)=3^{x}$
q) $\quad f(x)=5^{x}$
r) $\quad f(x)=\left(\frac{2}{3}\right)^{x}$
11.4 Determine the derivative (rate of change) $f^{\prime}\left(x_{0}\right)$ of the function f at the indicated position x_{0} :
a) $\quad f(x)=x$
i) $\quad x_{0}=0$
ii) $\quad \mathrm{x}_{0}=1$
iii) $\quad \mathrm{x}_{0}=-2$
b) $\quad f(x)=x^{5}$
i) $\quad x_{0}=0$
ii) $\quad x_{0}=2$
iii) $\quad \mathrm{x}_{0}=-\frac{2}{3}$
c) $\quad f(x)=x^{-4}$
i) $\quad \mathrm{x}_{0}=-1$
ii) $\quad x_{0}=-\frac{4}{3}$
iii) $\quad x_{0}=0$
d) $\quad \mathrm{f}(\mathrm{x})=\left(\frac{2}{3}\right)^{\mathrm{x}}$
i) $\quad x_{0}=0$
ii) $\quad \mathrm{x}_{0}=1$
iii) $\quad \mathrm{x}_{0}=-2$
11.5 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) The derivative (rate of change) of a function f at the position x_{0} is a ...
$\begin{array}{ll}\square & \ldots \text { real number. } \\ \square & \ldots \text { function. } \\ \Gamma & \ldots \text { tangent. } \\ \square & \ldots \text { graph. }\end{array}$
b) (see next page)
b) The derivative (derived function) f^{\prime} of a function f is a ...

\square	... real number.
\square	... function.
\square	... tangent.
Γ	\ldots graph.

c) $\quad \mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$ is the slope of the ...

- \quad... secant through the points $(0 \mid 0)$ and $\left(\mathrm{x}_{0} \mid \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$.
-.. secant through the points $\left(\mathrm{x}_{0}+\Delta \mathrm{x} \mid \mathrm{f}\left(\mathrm{x}_{0}+\Delta \mathrm{x}\right)\right)$ and $\left(\mathrm{x}_{0} \mid \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$.
-.. tangent to the graph of f through $\left(\mathrm{x}_{0} \mid \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$.
... tangent to the graph of f^{\prime} through $\left(\mathrm{x}_{0} \mid \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$.

