Exercises $4 \quad$ Linear function and equations Linear equations

Objectives

- be able to solve a linear equation.
- be able to determine the solution set of a linear equation.
- be able to solve a linear equation containing parameters.
- be able to perform a case differentiation.
- be able to treat applied tasks in economics by means of linear equations.

Problems

4.1 Determine the solution sets of the following equations:
a) $19 \mathrm{x}-32+17 \mathrm{x}=18 \mathrm{x}-30+16 \mathrm{x}-4$
b) $25 \mathrm{x}-16-9 \mathrm{x}=20+24 \mathrm{x}-10-10 \mathrm{x}$
c) $\quad 105-72 \mathrm{x}-53-69=55 \mathrm{x}+43 \mathrm{x}-23-170 \mathrm{x}+6$
d) $56 x-43-52-19 x=7-72 x-56 x+165 x-112$
4.2 Determine the solution sets of the following equations:
a) $22(\mathrm{x}-11)-5(\mathrm{x}-40)=110-(\mathrm{x}+53)$
b) $184-6(x-24)=214-3(2 x-38)$
c) $\quad(x-5)(x-2)=(x-4)(x-3)$
d) $\quad 5 x(x-1)-(2 x+3)^{2}-(x-5)(x+3)-6=0$
4.3 Determine the solution sets of the following equations:
a) $\frac{x+3}{5}=\frac{2 x-8}{3}$
b) $\quad \frac{x+3}{4}+\frac{1-3 x}{7}=0$
c) $\quad \frac{2}{x-1}=\frac{1}{x-2}$
d) $\quad \frac{x}{x-1}=\frac{x-1}{x-2}$
4.4 The equations below are equations in the variable x . Furthermore, the equations contain parameters a and b. Therefore, the solution sets of the equations depend on the values of those parameters.

Solve the equations for x , and determine the solution sets.
Take into account that the parameters a and b can be any real numbers.
a) $x(a-3)=a$

Hints:

- You may want to divide both sides of the equation by a-3. However, this is not allowed if $\mathrm{a}-3=0$, i.e. if $\mathrm{a}=3$, as dividing by 0 is not defined.
- When solving the equation, consider the two cases $\mathrm{a} \neq 3$ and $\mathrm{a}=3$.
b) $\quad(x+1)(b-2)=2 b x$
c) $\quad(a-b) x=a$
4.5 The graph of a linear function f with slope a contains the point P. Find the equation of the linear function.
a) $a=-5$
$\mathrm{P}(5 \mid-3)$
b) $\quad a=2$
$\mathrm{P}(3 \mid 0)$
c) $\quad a=0$
$\mathrm{P}(2 \mid 3)$
4.6 Alps Bikes uses the formula $B(t)=(-400 t+5000)$ CHF to find the book value $B(t)$ of a mountain bike after the time t after its purchase $(t=$ number of years after the purchase $)$.
a) What do the numbers - 400 and 5000 signify?
b) How long will it take the mountain bike to depreciate completely?
4.7 Two items A and B depreciate linearly:

Item A	original value $=200 \mathrm{CHF}$ depreciation $=16 \mathrm{CHF} /$ year
Item B	original value $=240 \mathrm{CHF}$ depreciation $=32 \mathrm{CHF} /$ year

a) How long will it take the two items to depreciate completely?
b) After how much time will the two items have the same value?

Hint:

- Think of the temporal development of the values as linear functions.
4.8 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) The solution set of a linear equation ...
$\stackrel{\Gamma}{\Sigma}$
$\stackrel{\Gamma}{5}$
... always contains at least one element.
... never contains two elements.
... only contains elements if the linear equation corresponds to a constant function.
... cannot be the empty set.
b) If a linear equation has exactly one solution ...
- ... the graph of the corresponding linear function intersects the x-axis.
- ... the equation does not contain any parameters.
- ... the solution must be an integer.
c) If a linear equation has the solution $x=2$, it can be concluded that \ldots

「
$\stackrel{\Gamma}{\Sigma}$
Γ
$\ldots \mathrm{x}=3$ is not a solution.
\ldots the graph of the corresponding linear function intersects the x -axis at $\mathrm{x}=2$.
... $\mathrm{P}(2 \mid 0)$ is a point of the graph of the corresponding linear function.
... $\mathrm{P}(0 \mid 2)$ is a point of the graph of the corresponding linear function.

