Exercises 3 Linear function and equations Linear function, simple interest, cost, revenue, profit, break-even

Objectives

- be able to think of a relation between two quantities as a function.
- be able to determine the domain, the codomain, the range of a given function.
- be able to draw the graph of a given linear function.
- be able to determine slope and intercept of a linear function.
- know some examples of linear functions in economic and everyday life applications.
- know and understand what simple interest is.
- be able to perform simple interest calculation.
- know and understand what fixed costs, variable costs, total costs, total revenue, total profit, and break-even value are.
- be able to apply the concept of linear functions to a new problem.

Problems

3.1 A taxi driver charges the following fare:
8.00 CHF plus 1.50 CHF per kilometre

Think of the taxi fare as a function f .
a) Determine the domain D , the codomain C , and the range R of the function.
b) Draw the graph of the function f.
3.2 The taxi fare as described in problem 3.1 can be thought of as a linear function which assigns a fare to each distance:

$$
\begin{aligned}
\mathrm{f}: \mathbb{R}^{+} & \rightarrow \mathbb{R}^{+} \\
\mathrm{x} \quad & \mapsto \mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b} \\
\text { where: } & \mathrm{x}=\text { distance/km } \\
& \mathrm{y}=\text { fare/CHF }
\end{aligned}
$$

Determine the values of a and b.
3.3 Find at least two more examples of linear functions in economics or in an everyday life context.
3.4 State both slope and intercept of the linear functions below, and draw the graphs of the functions:
a) $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$
$\mathrm{x} \mapsto \mathrm{y}=\mathrm{f}(\mathrm{x})=-2$
b) $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$
$x \mapsto y=f(x)=2 x-6$
c) $\quad \mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$

$$
x \mapsto y=f(x)=-x+3
$$

3.5 Simple interest at an annual rate of 0.5% is paid on an initial bank balance of 5000 CHF.
a) Determine the interest that is paid each year.
b) Determine the balance after ten years' time.
c) Determine both slope and intercept of the corresponding linear function.
3.6 In general, if an initial capital C_{0} pays simple interest at an annual rate $r(e . g . r=1.5 \%=0.015)$, the capital C_{n} after n years is given by the formula below (see formulary):

$$
\mathrm{C}_{\mathrm{n}}=\mathrm{C}_{0}(1+\mathrm{nr})
$$

a) Verify that the given formula is correct.
b) Determine both slope and intercept of the corresponding linear function.
3.7 An initial capital $\mathrm{C}_{0}=1200$ CHF pays simple interest at an annual interest rate of 1.5%.
a) After how many years will the capital exceed 2000 CHF?
b) At what annual interest rate (rounded to 0.05%) would the capital exceed 2000 CHF after 20 years' time?

Hint:

- Use the formula given in problem 3.6 and solve it for n and r respectively.
3.8 A satellite phone company offers three different tariffs:

Tariff A: monthly basic fee of 10 CHF plus 0.20 CHF per minute Tariff B: monthly basic fee of 25 CHF plus 0.10 CHF per minute Tariff C: no basic fee, 0.60 CHF per minute
Think of the the three tariffs as linear functions.
a) Draw the graphs of the three functions in one common coordinate system.
b) Determine the total fee for each tariff for a monthly phone call duration of 1 hour.
c) For what monthly phone call duration tariff A is cheaper than tariff C ?
d) For what monthly phone call duration tariff B is cheaper than tariff A ?
3.9 (from: Bittinger, Ellenbogen: Calculus and its applications, Pearson 2007, ISBN 0-321-48543-2)

EXAMPLE 9 Business: Total Cost. Raggs, Ltd., a clothing firm, has fixed costs of $\$ 10,000$ per year. These costs, such as rent, maintenance, and so on. must be paid no matter how much the company produces. To produce x units of a certain kind of suit, it costs $\$ 20$ per suit (unit) in addition to the fixed costs. That is, the variable costs for producing x of these suits are $20 x$ dollars. These costs are due to the amount produced and stem from items such as material. wages, fuel, and so on. The total cost $C(x)$ of producing x suits in a year is given by a function C :

$$
C(x)=(\text { Variable costs })+(\text { Fixed costs })=20 x+10,000
$$

a) Graph the variable-cost, the fixed-cost, and the total-cost functions.
b) What is the total cost of producing 100 suits? 400 suits?
3.10 (see next page)
3.10 (from: Bittinger, Ellenbogen: Calculus and its applications, Pearson 2007, ISBN 0-321-48543-2)

EXAMPLE 10 Business: Profit-and-Loss Analysis. When a business sells an item, it receives the price paid by the consumer (this is normally greater than the cost to the business of producing the item).
a) The total revenue that a business receives is the product of the number of items sold and the price paid per item. Thus, if Raggs, Ltd., sells x suits at $\$ 80$ per suit, the total revenue $R(x)$, in dollars, is given by

$$
R(x)=\text { Unit price } \cdot \text { Quantity sold }=80 x
$$

If $C(x)=20 x+10,000$ (see Example 9), graph R and C using the same set of axes.
b) The total profit that a business receives is the amount left after all costs have been subtracted from the total revenue. Thus, if $P(x)$ represents the total profit when x items are produced and sold, we have

$$
P(x)=(\text { Total revenue })-(\text { Total costs })=R(x)-C(x)
$$

Determine $P(x)$ and draw its graph using the same set of axes as was used for the graph in part (a).
c) The company will break even at that value of x for which $P(x)=0$ (that is, no profit and no loss). This is the point at which $R(x)=C(x)$. Find the break-even value of x.
3.11 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a) \quad Each straight line in a coordinate system can be considered as the graph of a linear function. The graph of each linear function is a straight line.
If y is proportional to x, x is not necessarily proportional to y .
The range of each linear function is \mathbb{R}.
b) f cannot be a linear function if ...

> _.. the graph of f is a straight line. _ .. $f(x) \neq x$ for at least one element x of the domain of f. _ ... the domain of f does not consist of all real numbers. _ $\quad . f(x)=a x+b$ and a depends on x.
c) In a simple interest scheme ...
$\square \quad$... the relation between time and capital does not correspond to a linear function.
... the interest paid at the end of each period depends on the capital at the end of the previous period.
\square
\square
... the interest paid at the end of each period is always the same amount of money.
... the capital doubles in less than 5 years if the annual interest rate is 20%.

