Exercises 1 Number sets
 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, set operations

Objectives

- know the definition and elements of natural numbers, integers, rational numbers, and real numbers.
- know and understand what a set, an element of a set, an empty set, a subset, an intersection, a union, and a set difference are.
- be able to perform basic set operations.

Problems

1.1 Decide whether each statement is true or false:
a) $\quad 4 \in \mathbb{N}$
b) $\quad-\frac{14}{7} \in \mathbb{Z}$
c) $\quad \sqrt{2} \in \mathbb{Q}$
d) $\quad \sqrt{9} \in \mathbb{N}$
e) $\quad \sqrt{9} \in \mathbb{Q}$
f) $\quad \sqrt{9} \in \mathbb{R}$
g) $\quad 1.67854 \in \mathbb{Q}$
h) $\quad 1.67 \overline{854} \in \mathbb{Q}$
i) $\quad \mathbb{N} \subset \mathbb{Z}$
j) $\quad \mathbb{Z} \subset \mathbb{Q}$
k) $\quad \mathbb{Q} \subset \mathbb{R}$

1) $\quad \mathbb{R} \backslash \mathbb{Z}=\mathbb{N}$
1.2 Determine the following sets:
a) $\quad \mathbb{Z} \backslash \mathbb{N}$
b) $\quad \mathbb{Z} \cup \mathbb{N}$
c) $\quad \mathbb{Z} \cap \mathbb{N}$
d) $\quad \mathbb{Q} \cap(\mathbb{R} \backslash \mathbb{Q})$
e) $\quad \mathbb{Q} \cup(\mathbb{R} \backslash \mathbb{Q})$
f) $\quad(\mathbb{Q} \backslash \mathbb{Z}) \cap \mathbb{N}$
1.3 Look at the sets A, B, and C:
$\mathrm{A}=$ Set of all cities of the world
B $=$ Set of all European cities
C = Set of all coastal cities of the world
Find at least five elements of the following sets:
a) $\quad B \cap C$
b) $\quad \mathrm{B} \backslash \mathrm{C}$
c) $\quad \mathrm{C} \backslash \mathrm{B}$
d) $\quad \mathrm{A} \backslash(\mathrm{B} \cup \mathrm{C})$
1.4 Decide which statements are true or false. Put a mark into the corresponding box. In each problem a) to c), exactly one statement is true.
a)

$$
\begin{aligned}
& \mathbb{N} \cup \mathbb{Z}=\mathbb{Q} \\
& \mathbb{Q} \backslash \mathbb{Z}=\mathbb{N} \\
& \mathbb{Q} \cap \mathbb{R}=\mathbb{Q} \\
& \mathbb{Z} \backslash \mathbb{N}=\{-1,-2,-3, \ldots\}
\end{aligned}
$$

b) $\quad \mathrm{A}=$ Set of all cities of the world

B $=$ Set of all European cities

$$
\begin{array}{ll}
\square & \mathrm{A} \cap \mathrm{~B}=\mathrm{A} \\
\square & \mathrm{~A} \cup \mathrm{~B}=\mathrm{B} \\
\square & \mathrm{~B} \in \mathrm{~A} \\
\Gamma & \mathrm{~B} \subset \mathrm{~A}
\end{array}
$$

c) (see next page)
c) Assume that x is a rational number. Therefore, it can be concluded that x is ...
... a real number.
... an integer.
... a fraction where both numerator and denominator are natural numbers.
... a natural number.

Answers

1.1

a)	true	b)	true	c)	false
d)	true	e)	true	f)	true
g)	true	h)	true	i)	true
j)	true	k)	true	l)	false

$1.2 \quad$ a) $\mathbb{Z} \backslash \mathbb{N}=\{0,-1,-2,-3, \ldots\}$
b) $\quad \mathbb{Z} \cup \mathbb{N}=\mathbb{Z}$
c) $\quad \mathbb{Z} \cap \mathbb{N}=\mathbb{N}$
d) $\quad \mathbb{Q} \cap(\mathbb{R} \backslash \mathbb{Q})=\{ \}$
e) $\quad \mathbb{Q} \cup(\mathbb{R} \backslash \mathbb{Q})=\mathbb{R}$
f) $\quad(\mathbb{Q} \backslash \mathbb{Z}) \cap \mathbb{N}=\{ \}$
1.3 a) $\mathrm{B} \cap \mathrm{C}=\{$ Lisbon, Copenhagen, Barcelona, Naples, Stockholm, $\ldots\}$
b) $\quad \mathrm{B} \backslash \mathrm{C}=\{$ London, Paris, Madrid, Berlin, Rome, ...\}
c) $\quad \mathrm{C} \backslash \mathrm{B}=\{$ Tokyo, San Francisco, Sydney, Rio de Janeiro, Cape Town, ...\}
d) $\mathrm{A} \backslash(\mathrm{B} \cup \mathrm{C})=\{$ Chicago, Mexico City, Nairobi, Beijing, Bogotá, ... $\}$
$1.4 \quad$ a) $\quad 3^{\text {rd }}$ statement
b) $\quad 4^{\text {th }}$ statement
c) $\quad 1^{\text {st }}$ statement

